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Abstract 

Microarray based gene expression profiling has been emerged as an efficient technique for cancer classification, 

as well as for diagnosis, prognosis, and treatment purposes. The classification of different tumor types is of great 

significance in cancer diagnosis and drug innovation. Using a large number of genes to classify samples based 

on a small number of microarrays remains a difficult problem. Feature selection techniques can be used to 

extract the marker genes which influence the classification accuracy effectively by eliminating the unwanted 

noisy and redundant genes. Quite a number of methods have been proposed in recent years with promising 

results. But there are still a lot of issues which need to be addressed and understood. Diagonal discriminant 

analysis, regularized discriminant analysis, support vector machines and k-nearest neighbor have been suggested 

as among the best methods for small sample size situations. In this paper, we have compared the performance of 

different discrimination methods for the classification of tumors based on gene expression data. The methods are 

applied to datasets from four recently published cancer gene expression studies. The performance of the 

classification technique has been evaluated for varying number of selected features in terms of misclassification 

rate  using hold-out cross validation. Our study shows that KNN, RDA and SVM with linear kernel methods 

have lower misclassification rate than the other algorithms.  
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1 Introduction and objectives: 

Conventional methods of monitoring and diagnosing cancer rely on a human observer to detect certain features. 

Cancer diagnosis is usually achieved using an imaging system, such as X-ray, Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), and ultrasonography. Microarray technology is a new tool that can 

automate the diagnostic task and improve the accuracy of the traditional diagnostic techniques (Sarhan, 2009). 

The classification of DNA micro array data allows the discovery of hidden patterns in expression profiles and 

opens possibility for accurate cancer classification which has great value in providing better treatment and 

toxicity minimization on the patients. The gene expression profiles that are obtained from particular microarray 

experiments have been widely used for differentiating normal or different cancerous states by using selected 

informative genes (Chuang, 2011). However, studying microarray dataset brings about some complexity due to 

the huge number of features that contribute to a profile as compared to the very low number of samples. Another 

challenge is the presence of biological or technical noise in the dataset, which further affects the accuracy of the 

experimental results. In practice, it has been observed that a large number of features may degrade the 

performance of classifiers if the number of training samples is small relative to the number of features (Jain, 

2000). There are two main procedures in gene expression data classification task: feature selection and 

classification. Several gene selection methods have been developed to select these predictive genes, such as t-

statistics, information gain, towing rule, the ratio of between-groups to within-groups sum of squares 

(BSS/WSS), Principal Component Analysis (PCA), and Genetic Algorithm (GA). Different classification 

methods from statistical and machine learning area have been applied to cancer classification such as Fisher 

Linear Discrimination Analysis (FLDA), Diagonal Discriminant Analysis (DLDA), Regularized Discriminant 

Analysis (RLDA), Maximum Likelihood Discriminant Rules, Classification Tree, Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), and the aggregating classifiers.  

Following are the objectives of our study:  

 To examine the classification performance of the selected supervised algorithms using delete-d method; 

 To reveal the effect of gene selection on different classification methods.   

 

2 Theoretical backgrounds: 

2.1 KNN:  KNN is a distance-based approach for classification. In order to classify an observation X in the test 

set, KNN takes the following steps: (i) select an integer K (i.e., by cross-validation) and find the K closest 

observations in the training set; (ii) classify the observation by majority vote, that is, choose the class that is most 
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common among those K neighbors (Dudoit et al., 2002; Speed, 2003). The KNN method is the simplest, yet 

useful approach to general pattern classification. Its error rate has been proven to be asymptotically at most twice 

that of the Bayesian error rate (R.O. Duda, 2002). However, its performance deteriorates dramatically when the 

input data set has a relatively low local relevance (J.H. Friedman, 1994). 

2.2 DLDA: Diagonal Linear Discriminant Analysis (Dudoit, 2002) is a simplification of classical LDA, which 

applies the common diagonal covariance matrix to all classes. It is computationally more efficient than other 

LDA-based algorithms. Interestingly, the “weighted voting scheme” for binary classification proposed by 

T.R.Golub (1999) can be shown to be a variant of DLDA. 

2.3 RDA: Classical Linear Discriminant Analysis (LDA) is not applicable for small sample size problems due to 

the singularity of the scatter matrices involved. Regularized LDA (RLDA) provides a simple strategy to 

overcome the singularity problem by applying a regularization term, which is commonly estimated via cross-

validation from a set of candidates (Ye, J., 2006). RDA is better able to extract the relevant discriminatory 

information from training data than the other classifiers tested, thus obtaining a lower error rate (Pima & 

Aladjem, 2004). The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a 

regularization technique (Lee et al., 2010). 

2.4 SVM: The SVM has been shown to give superb performance in binary classification tasks. Intuitively, SVM 

aims at searching for a hyperplane that separates the two classes of data with largest margin which is the distance 

between the hyperplane and the point closest to it). For multiclass SVM, there are many decomposition 

techniques that can adapt SVM to identify non-binary class divisions such as one-versus-the rest, pair wise 

comparison, and error-correcting output coding. SVM was used by Park and Cho (2003) and Li et al. (2004). 

 

3 Microarray Datasets  

Four publicly available microarray data sets are used for this study, with sample sizes ranging from 38 to 102 

and numbers of genes ranging from 2,308 to 6033. Gene expression values for all the datasets are available from 

the Bioconductor libraries. 

A. Leukemia: This dataset contains gene expression (3051 genes and 38 tumor mRNA samples) levels of n =38 

patients either suffering from acute lymphoblastic leukemia (ALL, 27 cases) or acute myeloid leukemia (AML, 

11 cases) where ALL and AML classes are coded in 1 and 2 respectively. It was obtained from Affymetrix 

oligonucleotide microarrays. Following the protocol in Dudoit et al. (2002), it was preprocessed by thresholding, 

filtering, a logarithmic transformation and standardization, so that the data finally comprise the expression values 

of p=3051 genes. The data are described in Golub et al. (1999) and can be freely downloaded from http://www-

genome.wi.mit.edu/MPR/. 

B. Lymphoma: The lymphoma dataset consists of 42 samples of diffuse large B-cell lymphoma (DLBCL), 9 

samples of follicular lymphoma (FL), and 11 samples of chronic lymphocytic leukemia (CLL). DBLCL, FL, and 

CLL classes are coded in 1, 2, and 3, respectively. The total sample size is n=62, and the expression of p =4026 

well-measured genes, preferentially expressed in lymphoid cells or with known immunological or oncological 

importance is documented. Matrix of gene expression data and arrays were normalized, imputed, log 

transformed, and standardized to zero mean and unit variance across genes as described in Dettling (2004) and 

Dettling and Beuhlmann (2002). More information on these data can be found in Alizadeh et al. (2000) and can 

be freely downloaded from http://llmpp.nih.gov/lymphoma 

C. SRBCT: This gene expression data (2308 genes for 83 samples) obtained from the microarray experiments of 

Small Round Blue Cell Tumors (SRBCT) of childhood cancer study. This data set contains 83 samples with 

2308 genes: 29 cases of Ewing sarcoma (EWS), 11 cases of Burkitt lymphoma (BL), 18 cases of neuroblastoma 

(NB), 25 cases of rhabdomyosarcoma (RMS). A total of 63 training samples and 25 test samples are provided in 

Khan et al. (2001) and was obtained from cDNA microarrays. Five of the test set are non-SRBCT and are not 

considered here. The training sample indexes correspond to 1to 65 and the test sample indexes (without non-

SRBCT sample) correspond to 66 to 83. Each tissue sample is associated with a thoroughly preprocessed 

expression profile of p= 2,308 genes, already standardized to zero mean and unit variance across genes. Data can 

be freely downloaded from http://www.thep.lu.se/pub/Preprints/01/lu_tp_01_06_supp.html. 

D. Prostate: The prostate dataset consists of 52 prostate tumor and 50 normal samples and obtained using the 

Affymetrix technology. Normal and tumor classes are coded in 1 and 2, respectively. Matrix of gene expression 

data and arrays were normalized, log transformed, and standardized to zero mean and unit variance across genes 

as described in Dettling (2004) and Dettling and Beuhlmann (2002). More information on these data can be 

found in Chung and Keles (2010) and can be freely downloaded from http://www-genome.wi.mit.edu/cancer. 
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4 Experimental Results and Discussions: 

For the classification job, we have started with the gene expression values existing for cancer disease samples 

obtained from the DNA microarray experiments. For identifying genes responsible for the classification of 

different tumor types, the available dataset were divided into two groups: one used for the training purpose and 

the other used for the testing purpose. The training set of data is utilized for learning the parameters of the 

classifier, while the test set of data is utilized to measure the misclassification rate.  

The essential idea of hold-out cross validation is to split the sample data into separate train and test datasets 

(Webb, 2002). The classifier is trained on the training set, and its performance is estimated by applying it to the 

test set. The selection of the train and test sets is done randomly, and the selected proportions are usually 70% 

for training and 30% for testing. The major disadvantage of this procedure is that the classifier is unable of 

making use of all data for training; however, if the sample size is large enough this could be accommodated. 

(Jain et al., 2000). 

4.1 Results: To study the impact of the selected gene number on the four classification algorithms, we compare 

their performances when different numbers of genes are used in the classification. For each data set, experiments 

are carried out with feature size 50, 200, 500, 1000 and full dataset. We choose the most discriminatory genes 

according to t-test (two groups) and ANOVA (more than two groups).To reduce the variability each experiment 

is repeated 500 times, and the average test error rates and their standard variances over the 500 experiments are 

reported. We now present our experimental results for the four classifiers (KNN, SVM, DLDA, and RDA) with 

four data sets. 

Number selected of genes=50 

Method/ Dataset Leukemia Lymphoma SRBCT Prostate 
  KNN 0.082(0.062) 0.353(0.056) 0.284(0.092) 0.165(0.059) 
  DLDA 0.098(0.085) 0.551(0.093) 0.459(0.096) 0.267(0.091) 
  RDA 0.093(0.080) 0.277(0.062) 0.415(0.083) 0.080(0.041) 
Kernels 
for 
SVM 

Linear 0.063(0.066) 0.447(0.099) 0.333(0.086) 0.109(0.044) 
Polynomial 0.299(0.036) 0.328(0.015) 0.545(0.059) 0.375(0.073) 
Radial 0.115(0.067) 0.297(0.030) 0.353(0.063) 0.098(0.041) 
Sigmoid 0.071(0.061) 0.249(0.038) 0.369(0.060) 0.104(0.052) 

Table 4.1: The average misclassification rates(%) and standard deviation based on 500 random partitions into 

training sets and test set by using delete-d method (where d=0.33) for 50 top ranked genes.  

Number selected of genes=200 

Method/ Dataset Leukemia Lymphoma SRBCT Prostate 
  KNN 0.014(0.034) 0.333(0.00) 0.276(0.080) 0.232(0.068) 
  DLDA 0.005(0.021) 0.584(0.088) 0.377(0.097) 0.351(0.071) 
  RDA 0.070(0.085) 0.261(0.061) 0.209(0.100) 0.065(0.042) 
Kernels 
for 
SVM 

Linear 0.002(0.013) 0.517(0.099) 0.266(0.084) 0.089(0.038) 
Polynomial 0.283(0.044) 0.332(0.005) 0.597(0.044) 0.399(0.061) 
Radial 0.073(0.063) 0.281(0.033) 0.326(0.064) 0.119(0.055) 
Sigmoid 0.002(0.014) 0.233(0.033) 0.334(0.064) 0.175(0.060) 

Table 4.2: The average misclassification rates(%) and standard deviation based on 500 random partitions into 

training sets and test set by using delete-d method (where d=0.33)  for 200 top ranked genes. 

Number selected of genes=500 

Method/ Dataset Leukemia Lymphoma SRBCT Prostate 
  KNN 0.003(0.016) 0.334(0.007) 0.212(0.081) 0.226(0.071) 
  DLDA 0.006(0.021) 0.556(0.091) 0.339(0.094) 0.355(0.089) 
  RDA 0.071(0.086) 0.257(0.065) 0.202(0.089) 0.072(0.043) 
Kernels 
for 
SVM 

Linear 0.004(0.017) 0.453(0.101) 0.217(0.079) 0.066(0.036) 
Polynomial 0.277(0.043) 0.333(0.000) 0.593(0.042) 0.285(0.091) 
Radial 0.086(0.073) 0.265(0.040) 0.324(0.055) 0.132(0.057) 
Sigmoid 0.004(0.016) 0.231(0.033) 0.282(0.059) 0.204(0.066) 
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Table 4.3: The average misclassification rates(%) and standard deviation based on 500 random partitions into 

training sets and test set by using delete-d method (where d=0.33) for 500 top ranked genes. 

Number selected of genes=1000 

Method/ Dataset Leukemia Lymphoma SRBCT Prostate 
  KNN 0.003(0.014) 0.335(0.020) 0.210(0.089) 0.197(0.066) 
  DLDA 0.013(0.030) 0.336(0.103) 0.265(0.096) 0.339(0.095) 
  RDA 0.066(0.077) 0.184(0.075) 0.120(0.082) 0.072(0.040) 
Kernels 
for 
SVM 

Linear 0.003(0.015) 0.165(0.075) 0.138(0.070) 0.060(0.034) 
Polynomial 0.281(0.040) 0.333(0.000) 0.603(0.041) 0.230(0.096) 
Radial 0.070(0.058) 0.231(0.047) 0.315(0.058) 0.115(0.052) 
Sigmoid 0.006(0.020) 0.217(0.033) 0.225(0.054) 0.215(0.068) 

Table 4.4: The average misclassification rates(%) and standard deviation based on 500 random partitions into 

training sets and test set by using delete-d method (where d=0.33)  for 1000 top ranked genes. 

Number of selected genes= full dataset 

Method/ Dataset Leukemia Lymphoma SRBCT Prostate 
  KNN 0.025(0.042) 0.024(0.030) 0.079(0.059) 0.186(0.063) 
  DLDA 0.028(0.042) 0.017(.023) 0.075(0.058) 0.376(0.099) 
  RDA 0.075(0.083) 0.034(0.048) 0.032(0.039) 0.045(.048) 
Kernels 
for 
SVM 

Linear 0.008(0.025) 0.004(0.013) 0.033(0.036) 0.095(0.041) 
Polynomial 0.307(0.005) 0.132(0.043) 0.528(0.103) 0.369 (0.063) 
Radial 0.268(0.053) 0.029(0.036) 0.151(0.074) 0.129(0.057) 
Sigmoid 0.014(0.031) 0.005(0.015) 0.050(0.045) 0.140(0.063) 

Table 4.5: The average misclassification rates(%) and standard deviation based on 500 random partitions into 

training sets and test set by using delete-d method (where d=0.33)  for full dataset. 

  

Figure 4.1: Boxplots of error rates on four 
datasets for 50 top ranked genes. 

Figure 4.2: Boxplots of error rates on four 
datasets for 200 top ranked genes. 
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Figure 4.3: Boxplots of error rates on four 
datasets  

for 500 top ranked genes. 

Figure 4.4: Boxplots of error rates on four 
datasets for 1000 top ranked genes. 

 

4.2 Discussions: Table 4.1 & Figure 4.1 reveals 
that, although data points are less disperse for SVM 

with sigmoid kernel and KNN than SVM with linear 

kernel but on an average it is better to choose linear 

(6.3%) kernel because it has lower average 

misclassification rate than the other classifiers. For 

lymphoma data, SVM with sigmoid (24.1%) kernel 

gives the best performance. For SRBCT data, KNN 

(28.4%) obtains the lowest average misclassification 

rates and for prostate data, RDA (8.0%) achieves the 

lowest average misclassification rate among all the 

classifiers 

We see from Table 4.2 and Figure 4.2, on an average 

it is better to choose SVM with linear (0.2%) kernel 

function for leukemia data because it achieves the 

lowest misclassification rate with minimum standard 

deviation. For lymphoma data, it is observed that 

SVM with sigmoid kernel function achieves the 

lowest misclassification rate 23.3%. With SRBCT & 

prostate data RDA obtains lower average 

misclassification rate than the other classifiers i.e. 

20.9% & 6.5%, respectively. 

In Table 4.3 and Figure 4.3, on an average it is better to select KNN (0.3%) which obtains the lowest average 

misclassification rate. For lymphoma data, SVM with sigmoid (23.1%) kernel function & for SRBCT data RDA 

(20.2%) yield better result than the others techniques. SVM with linear (6.6%) kernel function achieves the 

lowest average misclassification rate with minimum standard deviation for prostate data. 

In Table 4.4 and Figure 4.4, on an average it is better to use KNN (0.3%) & SVM with linear (0.3%) kernel 

because they obtain the lowest average misclassification rate. For lymphoma & prostate data SVM with linear 

kernel functions achieves smaller misclassification rate than others i.e. 16.5% & 6%, respectively. With 1000 top 

genes RDA (12%) achieves the lowest misclassification rate for SRBCT data. 

Table 4.5 represents the average misclassification rate & standard deviation. Figure 4.5 shows the illustration of 

these results for full datasets. For leukemia & lymphoma datasets, on an average SVM with linear kernel gives 

 

Figure 4.5: Boxplots of error rates on four 
datasets 

for full dataset. 
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the lowest misclassification rate 0.8% & 0.4%, respectively. For SRBCT & prostate data, RDA achieves the 

lowest misclassification rate i. e. 3.2% & 4.5%, respectively. 

The aim of our exertion was the comparative evaluation of four most used statistical analyses (nearest-neighbor, 

diagonalized linear discriminant analysis, regularized discriminant analysis & support vector machine with 

different kernel functions )by testing them on published datasets and measuring their misclassification rate given 

by hold-out cross validation. Now we briefly addressed the effects of variable selection on the relative 

performance of the classifiers. 

  

 

  

Figure 5.5:  Misclassification trend of the selected statistical technologies on leukemia, lymphoma, SRBCT and 

prostate gene expression dataset. 

We have observed that all the classifiers show stable results except SVM with polynomial & radial kernel for 

leukemia data. But for lymphoma and SRBCT data, almost all the selected techniques express different 

misclassification rates at different numbers of genes. In prostate data, on the contrary, all the chosen statistical 

algorithms perform better i.e. more or less stable results except SVM with polynomial kernel.  

Here, KNN (0.2%) technique reaches its minimum value of misclassification with a selection of top 1000 genes 

among four datasets. DLDA (0.5%) algorithm gains its minimum value of misclassification with a selection top 

200 features among four datasets. RDA (3.2%) technique achieves the lowest misclassification with a selection 

of more than 2000 genes among four datasets. SVM with linear (0.2%) & sigmoid (0.2%) kernel functions 

reaches their minimum value of misclassification with a selection of top 200 features. On the other hand, radial 

(2.9%) & polynomial (13.2%) kernel functions reach their minimum value of misclassification (2.9%) with a 

selection of more than 4000 features among four datasets. 
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5 Conclusions: 

In this paper, we have shown the comparative results of SVM using different kernels, KNN, DLDA and RDA on 

four different datasets. Here, we have attempted to explore the best choice among KNN, DLDA, RDA and SVM 

with different kernel functions. The selected kernels are linear, polynomial, radial basis function (RBF) and 

sigmoid kernels. Then, focusing on feature selection, we have compared the classification techniques for varying 

number of selected features and explore the most suitable method in each situation. For different number of 

informative genes, we have found that KNN, RDA and SVM with linear kernel function achieve the lowest 

misclassification rate most of the cases. Sometimes other algorithms have provided the lowest misclassification 

rate. The misclassification rate of the methods has fluctuated when different numbers of informative genes were 

used.  

Through these analyses, we can conclude that classification using gene expression data provides a promising 

future for cancer research.  
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