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Abstract

Tomographic reconstruction using Radon projectiaten at an anglé{0,2x) introduce a redundancy of
four. Hence the projection in one quadrénf0,n/2) are used for tomographic reconstruction to cedu
computational overheads. In this paper, we predetitthe though the projections at an argg[8,7/2) do
not introduce any redundancy, the achieved tomdncagconstruction is very poor. A qudrature Radon
transform is further introduced as a combinatiorRaflon transforms at projection angéeand @+n/2).
The individual back projections fdr and @+n/2) are computed in two parts separately; 1) cansid
them real and imaginary parts of a complex numbercdhsidering average of the individual back
projections. It is observed that the quadraturedRamlansform yields better results numerically and/
visually compared to conventional Radon transféfin2r).

Keywords: Single quadrant Radon transform, quadrature Radansform, Magnitude of complex
projection, average, reconstruction.

1. Introduction

Tomography refers to the cross section imagingrobhbject from either transmission or reflectionadat
collected by illuminating the object from many eifént directions one by one. In other words,
tomographic imaging deals with reconstructing aade from its projections as presented by S. Chandra
Kutter, et. al (2010). The exact reconstruction of a signal nexpuan infinite number of projections, since
an infinite number of slices are required to inéuall of Fourier spaces. If however the signal have
mathematical form then exact reconstruction is iptssfrom limited set of projections as given by
Meseresu and Oppenheim (1974). The first practicdlition of image reconstruction was given by
Bracewell (1956) in the field of radio astronomye ldpplied tomography to map the region of emitted
microwave radiation from the sun’s disk. The magpydar application is associated with medical imggi
by use of computerized tomography (CT) in which tteucture of a multidimensional object is
reconstructed from set of its 2D or 3D projecti¢Bsigoryan 2003). X-ray of human organs in whicdcgt

of several transverse projections are used tohgetwo dimension information which may be convetted
three dimensions.

The selection of the projection set has attractesl nesearchers in various applications. Svalbe and
Kingston (2003) presented selection of projectimgles for discrete Radon transform from the known
Farey fractions. It has been predicted in thathalFarey sequence points cannot be representBdaon
projections. This leads to a fact that the pixelthie annular and corner regions of an image téepaorly
represented in the projection domain with singteo$g@rojections. They also presented a generalimet
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Radon transform computation algorithm for NxN imagsing prime number size square tiles (Svalbe and
Kingston (2007). The radon transform and its deives are useful for many image processing apidica
such as denoising, locating linear features, deigand isolating motion (Donoho 1997,Candes 1998,
Candes and Donoho 1999) , Pattern recognition(GHeral (2005), image compression , and feature
representation (Donoho and Vetterli 2003). Sindettase applications of the Radon transform are in
essence discrete, an accurate discrete formalighredRadon transform is required. It will minimitee
need for interpolating the projections and recartgions. Though conceptualized in polar domaintEini
Radon transform (FRT) is almost orthogonal (Donahd Vetterli 2003). The FRT applies to square image
data pxp where p is a small prime and assume thgeris periodic with p in both the x and y directiby
defining the pxp array as the finite grou@ZZunder addition. Both the Fourier slice theorem and
convolution property hold for the FRT. Since p réme there are only (p+1) distinct line directiaftisus
p+1 projections) corresponding to the p+1 uniquegsoups. Every radial discrete line samples p gdimt
the image and has p translates. It intersects #mr a@istinct line only once. All these attributestch
those of lines in continuous space as given by #tiog (2007).

In this paper, we consider the possibility of sn@otreconstruction from a finite number of projens of

the proposed quadrature Radon transform using twproaches. In the first approach, the two set of
projections are taken from angbeand ¢+n/ 2) simultaneously and those two set of projectiores a
considered as a real and imaginary part of a complanber. In another one, the individual back
projections are averaged to yield smooth recontstmic The proposed approaches yield better results
compared to the single quadranta{02] Radon transform. Section 1 presents literature survey and
organization of the paper. Section 2 explains fodnRadon transform and its inverse i.e. back ptimjac
theorem with the help of Fourier slice theorem &ilter back projection. The anticipated Quadrature
Radon Transform (QRT), its property and algorittengiven in section 3. Experiments and results are
given in section 4. Finally conclusion is preseritedection 5.

2. Radon Transform

Let (x, y) be coordinates of points in the planen§ider an arbitrary integrable functibrdefined on
domainD of real spac®? If L is any line in the plane, then set projectionfirite line integrals of along
all possible lined. is defined as two dimensional Radon transformh @fMatus and Flusser 1993, Herman
and Davidi 2008, Herman 1980) . Thus,

f=R, =] f(x y) ds (1)

Wheredsis an increment of length alohg The domairD may include the entire plane or some region of
the plane as shown in Fig. 1. ifis continuous and has compact support fRes uniquely determined by
integrating along all lines L. Obviously the dist& integral along line L, is the summation of theel
intensities of D that fall on line L and is calladooint projection. A set of point projections, fdt lines
parallel to L and with a fixed angle and spanrorgr D, is called a projection.
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Fig. 1 Projection line L through domain D

In Fig.2 the projection line is considered perpenldir to a dotted line that passes through origid a
intersects x axis at angke The perpendicular distance between the line &edotigin is p. A set of
projections obtained due to integrals along albpelr projection lines perpendicular to the dottier is
called projection of D at an angbe Thus by changing the angle of the dotted tingith x axis over the
range [On/2), parallel projections for each value bfcan be obtained. This set of projections is called
projections of D over the first quadrant. Similadge can have projections of D over the remainimget
quadrants.

Fig. 2 Coordinates to describe the line in Fig. 1

The line integral depends on the values of p@nd

f (D9 =R, =] f(xyds )

L
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|
Thus, if f (p, @) is finite for allp and®, then f (p,9) is the two dimensional Radon transfornf(af y).

Now suppose a hew coordinate system is introdugttdaxes rotated by an angle . If the new axes are
labeled p ands as in Fig. 3, x and y can be re presented ingerfyp ands using the shifting of reference
mathematics as in (3).

X = pcosg-— ssing

. 3
y = psing+ scosp

A somewhat clearer form of Radon transform can bewpresented as in (4).

{ (p.#)= ] 1 (pcosp- ssimg,psip+ s cop Jis

—00

00w

Fig. 3 The line in Fig. 2 relative to original aratated coordinates.

Thus using (3) p may written as (5)¢ifs a unit vector in the direction of p.

p=¢.X = xXcosp+ ysing (5)

The parallel lines can be visualized as transladion of L using a translated dirac delta funcdo(p-
&x) along axis p as its multiplication with L. Themettransform may be written as an line integralr /e
by allowing the dirac delta function to select thre (5) from R* Thus by modifying the above (4) we
obtain (6)

f (p.) =] 1) 3(P-¢D dx ©
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Where & defines direction in terms of the angle The (x, y) space for a fixed angfe and the variable
changes along the direction definedfy

2.1 Fourier slice theorem

Fourier slice theorem (FST) explains the reconsitsamf the object from the projection data. Feuslice
theorem is derived by taking the one dimension ieotiransform of the parallel projections and ngtihat
it is equal to the slices of the two dimensions rfautransform of the object. The projection datawdd
estimate the object using two dimensional inverserier transform(Matus 1993, Portilla 2003, Hswatg
al 1996).

The simplest form of the Fourier slice theorem whie independent of the orientation between theaibj
and the coordinate system is diagrammatically prteskin Fig.4

Space domain Frequency domain

Fig. 4 Fourier Slice Theorem

In Fig (4) the (x,y) coordinate system is rotatgdab angle). The FFT of the projection is equal to the 2-D
FFT of the object slice along a line rotatedébyrhus the FST states that, the Fourier transfdrpacallel
projection of an imagfX, y)taken at an anglé gives a slice of the 2-D transform, subtending aglesd
with the u-axis. In other words one dimensionald¥Bet of projections gives the value of two dinienal
FT along lines BB in Fig. 4.

2.2. Filtered Back Projection

Filter back projection has two steps; the filteripart, which can be visualized as a simple weighth
each projection in the frequency domain, and thek paojection part which is equivalent to findinget
wedge shaped elemental reconstructions as preségtedHsung et. al (1996). Original image can be
reconstructed exactly using the projections by ypglfilter and then taking the back projectionsaiand
Slaney (2001). The process of filtered back priapactan be explained as below

1) Apply a weighted filter, to the set of projecticiesobtained filtered projections.
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2) Take back projections to obtain the exact reconstm of the original image i.e. inverse radon
transform algorithm

In the process of back projection, the filteredjgeton at a point t makes the same contributioralto
pixels along the line L in the x-y plane. The rdéisigl projections for different anglesare added to form
estimate of(x, y). To every point, y) in the image plane there corresponds a valuextqes) + y sirp) .
This is shown from Fig. 5. It is easily seen thatthe indicated anglé, the value ot is the same for all
(x,y) on the line L. Therefore, the filtered prdjen, Q, ~will contribute equally to the reconstruction
process. Thus each filtered projecti@s is smeared back, or backprojected , over the irpéagee.

Qy (1)

g t=(x cos;+y sing,)

g / y

>
»

/ N

Fig.5 Reconstruction using back projection.

In Fig. 5a filtered projection is shown smearedkbaeer the reconstruction plane along a line ofstant t.

3. Quadrature Radon Transform

In most of the orthogonal image processing algorthve consider imadéx, y) as a separable function i.e.
f(x, y)=1(x) * f(y) . Thus we first process the image along rows ard tlong columns i.e only in x and y
direction and anticipate that the processing ima w directions enough to approximate the procegsaih
over the image in all possible directions. Obvigugtocessing of a 2D variable will not fetch dedire
results with processing only in one direction. Radmansform of a 2D variable for anglesf2) is
processing of the variable along line projectionk/dn the first quadrant. Here we propose the Qaladle
Radon transform, that takes projections on a lin@naangled and also along a line perpendicular to it i.e.
at @+n/2). Thus two sets of projections at right angtesach other are obtained. Let the continuouscbbje
f be approximated digitally within a four quadrarttitee and every quadrant is a digital array of dintaen
the lines in the first quadrant and the third qaatliare parallel to each other. Similarly the prtga lines

in the first and the third quadrant are parallee&zh other. Obviously two sets of parallel progectines
on a discrete space is going to yield the sameegtion results. Thus two of the four quadrant mige
sets may be the third and fourth quadrant are d@ahinand can be eliminated. Thus the projectiorihen
first and the second quadrant have been consideredconstruction using back projection algorittsg,.
(7) and (8) present the sets of projections infilse and the second quadrant. The pixel arragrofnput
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image results in two sets of projections; the finsé for the first quadrant jf/2) and the second one for the
second quadrantf2,t). Both the sets of projections are of equal sizéhat of the input pixel array. Thus,

redundancy of only scale two is introduced as agdwur in case of Radon transform in four quadrant
[0,2m).

?1{? :elm[o,n/z)} =[ {,(95(p-£ ) dx ™

?2{?:925[77/2,”)} =[ f,(0 3 (p-&x)dx ®)

In the first approach, the individual set of projess in each quadrant are considered real andiimagy
parts of a complex entity. Thus (9) representgptioposed Complex Radon transform.

O O
f=f, +jf, ©)

If FBP represents filtered back projections fpf(10) and (11) represent the individual reconstmicte
versions off using the filtered back projections.

f,= FBR(,) (10)

f,= FBR(T,) (11)

Let f be the reconstructed signal using projectiondath the quadrants. Using the first approachiilit w
be represented by (12). The reconstruction usiagétond approach is presented by (13).

f:%4f+v (12)

In the second approach, the individual set of mtaeas is considered independent. The first quadsanof
projections is considered in phase and the secaadrgnt set of projections is considered a quadkratu
component. Thus (7) and (8) jointly represent ttuppsed quadrature Radon transform.

While computing the inverse Radon transform, thekbprojection algorithm is applied on the two
components resulting from (7) and (8) individual(¥0) and (11) represent the sets of back projestic.
the respective inverse Radon transforms.
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Theoretically, both should result in perfect recdangtion (Chen et. al. 2007) individually. But & dbvious
that, a single set of projections in only one gaatipreserves the inter pixel relations only in direction;
either along rows or columns. Also, it poorly regaets the corner pixels(Svalbe and Kingston 2083) a
result the reconstruction using projections onlgtire quadrant is not accurate and smooth. Thegifons
in more than one quadrant, rather at right anglabe first one will represent and preserve theripixel
relations more accurately. The corner pixels’ repreation will also be improved as a result of agarg
in spatial domain. Thus better tomographic recasion of the input image is obtained.

In the first approach, the resultant back projeci® computed as magnitude of the complex number as
presented in(12). In this approach, a normalizatiyna factor of (2% is required to display the
reconstructed image using 8 bit graphics. In tleeisé approach, the resultant back projection isprded

as average of the two individual back projectioagpeesented in (13 ). In case of both the appemiie
reconstructed images are better than the recatisinufrom single quadrant projections.

4, Experiments

Initially, Radon transform of the gray and colostténages have been computed using projectionisein t
first quadrant i.e. from 0O to 89 degrees. Furthererse Radon transform of the projection resudts been
taken using back projection theorem with differfiters like ‘bilinear’, ‘bicubic’ etc to reconstat original
images. MSE and PSNR of the reconstruction have lseenputed. The reconstructed images are also
observed visually. Further, radon transform of fagne images were computed in the second quadrant
using projections from 90 degrees to 179degredgir@t images are reconstructed using the projastio

the second quadrant using different filtered baakgetions. MSE and PSNR of the reconstructed image
using projections in the second quadrant are adsopated. Using the first approach, the reconstdicte
image using the first quadrant and the second quaghrojections are then considered real and inaagin
part of the reconstructed images respectively. fsaltant magnitudes of the reconstructed images ar
computed using (12). MSE and PSNR of thus recoct&duimages have been computed. In the second
approach, average of the two reconstructed imagjeg the first and second quadrant projectionsbieas
taken as final reconstructed image. MSE and PSNReofeconstructed average image has been computed.
These experiments have been repeated for seveaglesnbut a few representative results and images
reconstructed using the discussed and proposedthige have been presented in the next section.

5. Results

Results of the proposed forward and inverse Radammstorm have been benchmarked with that of the
Radon transform in the first quadrant i.e.7{02). Table | presents MSE and PSNR of reconswoustivith
single quadrant and both quadrant projections fferdint color images using various filters befoeek
projection.
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Table 1 : Comparative performance of Single quadradon reconstruction and the proposed Quadrature
Radon Trans.

Quadrature| Quadrature
Radon Radon
(Complex) (Average)

PSNR PSNR PSNR
MSE (db) MSE (db) MSE (db)

Neares}110.95| 27.67 | 24.4834.25| 58.09 30.4
Linear|110.96| 27.67 | 23.36 34.44| 54.19 30.79
Spline|110.84 27.68| 22.06 34.69| 52.54 30.92
Cubic | 110.95 27.67 | 24.4834.25| 58.09 30.4
Nearest114.75 27.53| 38.46 32.28| 75.29 29.36
Linear|114.54 27.54 | 38.3332.41| 73.84] 29.44
Spline|114.30| 27.55| 38.6832.60| 71.54 29.5
Cubic | 114.36 27.54 | 38.4032.51| 72.53 29.52
Nearest112.46| 27.62| 23.36 34.44| 57.13 30.56
Linear|112.17| 27.63| 23.9034.53| 54.92 30.73
Spline|112.04 27.64 | 23.87 34.73| 53.80 30.82
Cubic | 112.09 27.63| 23.30 34.64| 54.31 30.73
Nearest 92.43| 28.47| 47.8431.33| 79.33 29.13
Linear| 92.99| 28.49 47.2431.38| 77.33| 29.24
Spline| 92.15| 28.48 46.1031.49| 76.72] 29.23
Cubic| 92.01| 28.49 47.881.42| 77.28 29.24
Nearest122.81 27.23| 64.71 30.02| 101.4 28.0¢
Linear|122.16 27.26 | 62.4930.17| 98.02 28.21
Spline|122.021 27.27 | 60.57 30.30| 96.75 28.27
Cubic | 122.1% 27.26 | 61.7230.22| 97.68 28.23

Single

. Quadrant
Image | Filter

Peppers

Pears

Football

Winters

Baboon

It is quiet obvious from Table I, that MSE for restruction using single quadrant is highest and
accordingly PSNR is lowest as presented in coluran®4. In case of reconstructions using projestion

the two quadrants and considering the individualkbprojected reconstructions as real and imaginary
parts, the MSE is quiet low and PSNR is comparBbtikiggh as presented in column 5 and 6. Using ayera
of the back projections in the two quadrants, th®BVand PSNR are moderate for all the reconstructed
images. Thus numerically the reconstruction usingle quadrant is poorest while using the firstrapgh

is the best.
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Fig, 6 Comparative Performance as in Table |, efdiscussed techniques in bar chart form

Fig.7.(c) Fig.7.(d)
Fig.7. (a) Peppers (b) Reconstructed using singladgant Radon projections (c) Reconstructed using
Radon Complex humber magnitude (d) Reconstructied) @average of Quadrature Radon back projections
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Fig.8.(a) Fig.8.(b)

Fig.8.(c) Fig.8.(d)

Fig.8. (a) Football (b) Reconstructed using sir@imdrant Radon projections (c) Reconstructed using
Radon Complex humber magnitude (d) Reconstructied) @average of Quadrature Radon back projections
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Fig.C.a Fia.9.b

Fia.C.c Fia.9.d
Fig.9.(a)Baboon (b)Reconstructed using single QargdiRadon projections (c) Reconstructed using
Radon-Complex magnitude (d) Reconstructed usingegeeof Quadrature Radon back projections
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Fig.10.(a) Fig.10.(b)

Fig.10.(c Fig.10. (d
Fig.6. (a) Peppers (b) Reconstructed using singladgant Radon projecttions (c) Reconstructed using
Radon Complex number magnitude) Reconstructed using average of Quadrature Réuhok

projections

Fig. 6 presents the comparison of performance @fitfferent techniques presented in Table 1 infeine

of a bar chart. Fig. 7(a), Fig. 8(a), Fig. 9(a) &g 10.(a) present original color images Peppeostball,
Baboon and Winters. The images were transformedgusingle quadrant Radon projections and
reconstructed using the same filtered back prajastiFig. 7(b), 8(b), 9(b) and 10 (b) present twilts of
reconstruction using the single quadrant projestidnis obvious that all these images are quistodied
and hence unacceptable. Further projections warguated for the second quadrant. Reconstruction was
done using (12) after taking back projections. Phesented visual results in fig 7(c), 8(c), 9(cjl d®(c)
indicate that the reconstructions using this apghiaae also unacceptable though numerically the BISE
PSNR are the best as presented in table 1. Irettand approach, average of the two back projecti@ss
computed as in (13). It is observed that, thoughMISE and PSNR are moderate, these results prdgante
Fig. 7(d), 8(d), 9(d) and 10(d) are the best viyual

6. Conclusion

Thus reconstruction using single quadrant Radorjegiions [0gx/2) are not enough for accurate
reconstruction. Both the proposed approaches yialderically and visually better results compared to
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reconstruction from only the projections in thesfiguadrant. The first approach of taking the miagie of

the two individual back projections consideringrtheeal and imaginary part of a complex number weld
numerically better but visually poor results. Howevhe second approach of taking average of the two
individual back projections yields numerically moate but visually the best results.
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