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Abstract 

Segmentation is an aspect of computer vision that deals with partitioning of an image into homogeneneous region. 

Medical image segmentation is an indispensable tool for medical image diagnoses. Geometric active contour (GAC) segmentation 

is one of the outstanding model used in machine learning community to solve the problem of medical image segmentation. 

However, It has problem of deviation from the true outline of the target feature and it generates spurious edge caused by noise that 

normally stop the evolution of the surface to be extracted. 

In this paper, enhanced Geometric active contour was formulated by using Kernel Principal Component Analysis(KPCA) 

with the existing Geometric active contour segmentation model and performance evaluation of the formulated model was carried 

out. 
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1. Introduction 

Image segmentation is an aspect of computer vision that deals with the partitioning an image into regions having homogeneous 

meaning. It is used to separate an object from its background and extracts meaningful objects lying in images either by dividing 

images into contiguous semantic regions, or by extracting one or more specific objects in images such as medical structures. 

However, we have different types of image segmentation methods which are not suitable for medical images since medical images 

are diverse, complex and vary from natural images.  

Some of the methods used for medical image segmentation fall under deformable models. The use of deformable model was 

popularized by Kass et al. (1990), snake model was used to develop active contour model that minimizes energy functional under 

the influence of forces which are internal force, image force and external constraint force. Deformable models can be classified 

into three categories which are Free-form, Parametric and Geometric active contour model. 

Geometric active contour model 

This make use of level set method that represent contour or surfaces as Zero level set of a higher dimensional function usually 

called a level set function Chunming et al, (2011). Level set can handle topological changes in curve evolution which is not 

possible with the classical active contour model. Osher and Sethian (1998) offer a natural and numerical implementation of curve 

evolution equation using level set. Readers are refer to Neithammer and Tannenbum (2004) for some previous work on Geometric 

active contour model. Xiao et al., (2003) gave the numeric scheme used for GAC model, which is describe in the following 

equation. 

Let x= (x, y) denote a point in a curve C which is a member in image domain Ω and let the curve be represented by Lipchitz-

continuous function using signed distance function
. 

A parameterized differentiable curve C is a differential map
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The rule that determine how each point C moves starting from initial curve Co is 

 

 
  ttPCv

dt

tPdC
,,

,


                         (2)
 

Where V = vector field that refers to as speed, Ignoring C and V in equation 2 gives 

 v
dt

dC


                                       (3) 

Equation (2) gives a partial differential equation that determines how curve C evolves and often called flow. Minimized the energy 

below        

                    
       2,

2
)(, xITGxHTGHTimageE  

                       (4)                               
 

Where imageE  is the energy that represents distance between the shape of the region defined by the interior of the curve C and the 

shape G extracted from the image. Effective minimization of the energy in (4) amount to realizing a trade-off between segmented 

object and the background.  

Enhanced Geometric Active contour model 

The enhanced model (ENGAC) was formulated using Kernel Principal Component Analysis (KPCA) and Geometric active 

contour (GAC) segmentation model. KPCA was used to get shape variability within the Geometric active contour segmentation 

model. The training set of MRI and CT scan of tran-axial medical images were gotten from University College Hospital, Ibadan, 

Oyo state. The medical images were registered using appropriate registration method to pre-process the medical images. Figure 1 

gives the overview of the enhanced geometric active contour segmentation model. 

 

                                              
                              Figure 1: Overview of enhanced Geometric Active Contour model 

 

The enhancement process started for the conventional Geometric active contour segmentation model by building Kernel Principal 

Component Analysis (KPCA) feature space for medical shapes to be extracted and segmented. The steps involves were; 
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(i) Get a training set of registered medical images 

(ii) Represent the contour of the registered medical images with high dimensional function using signed distance function, such that 

a point was represented by  (Xi ,Xj) where  i = 1……N and j = 1…..N 

(iii) Calculation of mean offset map represented by φ  for the points using 

              

 



N

i
jXiX

N 1
,

1


                                                    (5) 
(iv) The centered kernel was formed  for the points this equation  

       K (i,j)=                               jXiXKjXiXjXiX   ,,
          (6)                                                                      

      where  
      ii XX

 

(v) The centered kernel was decomposed by getting 

(a) Diagonal matrix that represent Eigen values represented by (α1……αn) 

(b) Orthonormal matrix that contain Eigen vectors represented by (Mi1……MiN) 

(c) Covariance matrix calculated using      
   TjXiX

N

i
jXiX

N
C ,

1
,

1





 

(vi)   The Eigenvector of Covariance matrix was computed for the decomposed kernel denoted by 
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i
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


                                      (7)
 

(vii) Any subsequent projection of element  X of the input space I on the KPCA space was  denoted by 
 XP'

and the co-

ordinate of   
 XP '

  on kth component 
,kV
 was calculated by 
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                                                                      (8) 

(viii) The projection of 
 X

onto the subspace  spanned by the first l eigenvectors was calculated by  

                                       





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                                                                                     (9)

 

(ix) The square distance 

2

Fd
between 

 X
and its projection on the KPCA space was denoted by     

 

              
         22 '', XPXXPXdF  

                                                           (10)          

                                            

To hybridize GAC and Kernel PCA, these are the steps; 

 

(i) Perform nonlinear PCA on the constraint SDF using Polynomial kernel function.  

                                               
 

c

jijiK
o

 ,, 
                                                                                                          (11)                                                           

From equation (11), when c = 2 and the square bracket is opened,         

                                            

22

, jiji

c

ji  
                                                                                   (12)                                        

  where    
c = variance parameter. 
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2

ji  
= square distance between two SDFs Φi and Φj 

o  =  nonlinear mapping corresponding to Polynomial kernel 

 

(2)     Minimize the energy functional equation below;
 

                                    
   ii

F

energy xZxxE  ',)( 
                                                                                   (13)                            

where 
F

energyE
 denotes the facts that the shape knowledge is expressed as a distance in feature space. 

x = test shape represented by Signed Distance Function (SDF). 

  using 
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where
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2. Methods of Performance Evaluation 

   The performance evaluations of the models were carried out using the following metrics by Lauren (2001). These metrics 

were used to evaluate the performance of enhanced Phasewire image segmentation on Livewire image segmentation.   

    (a) Segmentation/Running time 

      This is the time taken to compute the segmentation including the running time of the algorithm or the time spent to 

perform interactive segmentation. The research was implemented on Compaq Presario CQ60 notebook PC with AMD Athlon 

Dual-core QL-62 2.00 GHz processor. 

   (b) Segmentation Accuracy 

           The accuracy of the segmentation algorithms is generally based on Volume measurement. This is the volume of 

segmented feature in the image domain. It   is calculated by multiplying number of voxel by the volume of each voxel. 

   (c)  Hausdsorff distance 

This evaluating metric measures the degree of mismatch between the initial constraint and the boundary of the 

extracted feature. It identifies the point in one set that is the farthest from the other and outputs the distance to the nearest point 

in the other set. For two sets of points maaA ,.....,1 and
 nbbB ,.....,1  the hausdorff distance H(A,B) is defined as; 

 

      H ( A, B) = max( h( A, B), h(B, A))                                                           

   Where        h(A, B) = max min || a- b || 

                                 aε A      bεB  

(d)  Assessment by the Medical expert. 

This is the evaluation based on Expert comment on the output of the system. The questionnaire and the system were made 

available for the Medical expert on the ease of usage and segmentation quality of the output 

 

 

3 Discussion of Results 
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The training sets used for the evaluation were obtained from University College Hospital Ibadan (UCH). Trans-axial 

Human Brain medical images for both Computed tomography (CT) and Magnetic Resonance Imaging (MRI) were used. Figure 

2(a) is a MRI scan of a human brain that serves as the test image for the registration, while Figure 2(b) is a CT scan of a human 

brain that was used as the refrence image for the registration. Figure 2(c) is a registered image for both CT and MRI 

     

 

 

                  
(a)   (b)   (c)   (d)  

 

 
Figure 2:  Medical image Registration (a) MRI scan of trans-axial Human Brain (b) CT scan of trans-axial Human Brain (c) 

Registered image (d) Region of interest for segmentation 

 

 

               
(a)     (b)        (c)                                 (d)                                (e) 

 

   

              (f)               (g)                              (h)                                         (i) 

     Figure 3: Segmentation Results for segmenting Caudate nucleus from trans-axial Human Brain 

             (GAC)      (a) contour at iteration = 100 (b) contour at iteration = 250 (c) Final segmentation contour at iteration =350 

(d) magnitude of Eigenvalue (e) 3D view of segmented area. 
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             (ENGAC)  (f) contour at iteration = 100 (g) contour at iteration = 250 (h) Final segmentation contour   at iteration =350 

(i) 3D view of segmented area. 

Figure 2(d) shows a region of interest or an initial constraint for the region to be segmented. The constraint then evolved according 

to specified time steps (0.005s). During the process, embedding functions continues to change the topology little by little according 

to the given time steps. The embedding function then reconstructed after each set of the time-steps using incremental solver in 

GAC. The evolving energy stops when the initial constraint minimized the energy functional to reach the shape in kernel space in 

ENGAC. 

Figure 3(a) and (b) depict intermediate results of ENGAC Segmentation model at iteration equal 100 and 250 respectively. Figure 

3(c) gives the final segmentation result at iteration equal 350. The caudate nucleus in trans-axial human brain was fully extracted 

using the model. Figure 3(d) gives the magnitude of Eigen value and isovalues for ENGAC image segmentation that results in a 

set of shape parameter vectors. From this set, the mean parameter vector and the covariance matrix as well as the Eigen vector and 

Eigenvalues were interpreted as mode of shape variation. At different points in the feature space on the co-ordinates x and y, x 

represents 0.002 and y represents 0.039.  The nine (9) vectors found were represented as shown in the graph and the non-linearity 

of these Eigen vectors was what kernel identifies by keeping the Eigen vectors higher than tolerance of 1e
-18

 and by normalizing 

these Eigen vectors to get the exact shape. Figure 3(e) gives the 3D view of the final segmentation of the specified region of 

interest. This could help the physician to locate the position of caudate nucleus in the entire image domain.  

 Figure 3(f) and (g) depict intermediate results of GAC Segmentation model at iteration equal 100 and 250 respectively. Figure 

3(h) gives the final segmentation result at iteration equal 350. The caudate nucleus in trans-axial human brain was fully extracted 

using the model. Figure 3(e) is the 3D view of the final segmentation of the specified region of interest 

 

4 Performance Evaluation 

The results of the performance evaluation were given below;  

   

Segmentation time 

  The segmentation time was evaluated for Geometric active contour (GAC) and enhanced Geometric active contour 

(ENGAC). Table 1 gives the result for the evaluation. Figure 4 shows that as the number of iteration increases the segmentation 

time increases for both segmentation methods but ENGAC model’segmentation time is 16.03% slower to segmentation time in 

Geometric Active Contour (GAC) model. 

Table 1: Segmentation time for GAC model and ENGAC model for caudate nucleus segmentation in trans-axial Human Brain 

 

No of 

iteration 

 

(ENGAC) 

 

(GAC) 

 Segmentation 

time(sec) 

Segmentation 

time(sec) 

30 58.65 45.42 

60 67.29 60.17 

90 79.31 78.49 

120 91.18 80.35 

150 100.49 84.38 
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                                        Figure 4: Segmentation Time (ENGAC Vs GAC) 

Segmentation accuracy 

The segmented area volume that was used to measure the accuracy was calculated by multiplying number of voxel by the volume 

of each voxel. Table 2 gives the results obtained for GAC and ENGAC segmentation model. In Figure 5, as the number of 

iteration increases the volume area segmented decreases for both segmentation methods but ENGAC has 18.21% segmented  area 

volume decrement compare to GAC. 

Table 2: Segmented volume area for GAC model and ENGAC model for caudate nucleus segmentation in trans-axial Human 

Brain. 

 

No of 

iteration 

 

(ENGAC) 

 

(GAC) 

 Segmented area 

volume(cm
3
) 

Segmented 

area 

volume(cm
3
) 

30 5.69 5.67 

60 4.55 4.71 

90 4.03 4.24 

120 3.12 3.85 

150 3.01 3.68 

 

0

20

40

60

80

100

120

0 100 200

Ti
m

e
 (

se
c)

 

No of iteration 

Segmentation time (ENGAC) Versus 
Segmentation time (GAC) 

Segmentation
time(sec)
ENGAC

Segmentation
time(sec) GAC

http://www.iiste.org/


Computer Engineering and Intelligent Systems    www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.3, 2012 

 
 

85 

 

                                               

                                            Figure 5: Segmented area volume (ENGAC Vs GAC) 

Haudsorff distance 

Haudsorff distance before and after segmentation was also calculated for the segmented features. Table 3(a) and (b) show the result 

of statistics used to quantify the nearness of the points in the initial constraint to the feature extracted. The hausdorff distance is 

considerably reduced in ENGAC model by 2.75mm compared to GAC model. 

Table 3: Haudorff distance Before and After segmentation (a) GAC (b) ENGAC 

(a) 

                       (GAC) 

Before segmentation After 

segmentation 

Average Hausdorff 

distance 

27.74mm 23.83mm 

 

(b) 

 (ENGAC) 

Before segmentation After 

segmentation 

Average Hausdorff 

distance 

27.81mm 21.08mm 

 

Medical Expert’s assessment 

The system for ENGAC model was evaluated using likert method based on two formulated criteria which are System Ease of Use 

(SEU) and System Segmentation Quality (SSQ). The scale was from 1 to 5, with 5 being the highest. The response means of the 

methods were calculated Table 4 depicts the Medical expert’s assessment for the features segmented. Segmentation quality of the 

ENGAC segmentation model was rated higher due to the smoothness of the contour generated at the boundary of the feature 

extracted follow by GAC model.  
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  Table 4: Medical Expert’s assessment 

 

Study 

 

Model 

 

Ease of use 

response 

mean 

 

Segmentation Quality 

response mean 

 

Tran axial 

CT image 

   

GAC 3.40 3.53 

ENGAC 3.42 4.25 

 

 
5.    Conclusion 

 

Conclusively, GAC segmentation model is faster than ENGAC segmentation model in terms of segmentation time but ENGAC 

model has optimal Segmentation accuracy and quality because of its higher decrement rate in the final segmented area volume and 

hausdorff distance compared to Geometric active contour. 
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