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Abstract 

 In this paper we extend the multi-valued mappings and obtain coupled coincidence points and common 

coupled fixed point theorems involving hybrid pair of single valued and multi-valued maps satisfying 

generalized contractive conditions in the frame work of a complete metric space.  

Keywords: coupled common fixed point, coupled coincidence point, coupled point of coincidence, w-compatible 

mappings, F-weakly commuting mappings 

 

1.  Introduction and preliminaries 

Let (X, d) be a metric space. For x ∈ X and A ∈ X, we denote d(x, A) = inf{d(x, A): y ∈ A}. The class of all 

nonempty bounded and closed subsets of X is denoted by CB(X). Let H be the Hausdorff metric induced by the 

metric d on X, that is, 

H(A, B) = max{sup d(x, B), sup d(y, A)},    

   x∈A     y∈ B      

for every A, B ∈ CB(X). 

 

Lemma. 1.1 [1]Let A, B ∈ CB(X), and a >1. Then, for every a ∈ A, there exists b ∈ B such that d(a, b) ≤ aH(A, 

B). 

 

Lemma .1.2 [2]Let A, B ∈ CB(X), then for any a ∈ A, d(a, B) ≤ H(A, B). 

 

Definition . 1.3 Let X be a nonempty set, F : X × X → 2
X
 (collection of all nonempty subsets of X) and g : X → X. 

An element (x, y) ∈ X ×X is called (i) coupled fixed point of F if  x ∈ F (x, y) and y ∈ F(y, x) (ii) coupled 

coincidence point of a hybrid pair {F, g} if g(x) ∈ F(x, y) and g(y) ∈ F(y, x) (iii) coupled common fixed point of a 

hybrid pair {F, g} if  x = g(x) ∈ F(x, y) and y = g(y) ∈ F(y, x). 

We denote the set of coupled coincidence point of mappings F and g by C(F, g). Note that if (x, y) ∈ C(F, g), then 

(y, x) is also in C(F, g). 

Definition . 1.4 Let F : X × X → 2
X
 be a multi-valued mapping and g be a self map on X. The hybrid pair {F, g} is 

called w- compatible if g(F(x, y)) ⊆ F(gx, gy) whenever (x, y)⊆ C(F, g). 

Definition . 1.5 Let F : X × X → 2
X
 be a multi-valued mapping and g be a self-mapping on X. The mapping g is 

called F- weakly commuting at some point (x, y) ∈ X × X if g
2
 (x) ∈ F(gx, gy) and g

2
(y) ∈ F(gy, gx). 

 

Bhaskar and Lakshmikantham [3] introduced the concept of coupled fixed point of a mapping F from X ×X to X 

and established some coupled fixed point theorems in partially ordered sets. As an application, they studied the 

existence and uniqueness of solution for a periodic boundary value problem associated with a first order ordinary 

differential equation. Ćirić et al. [4] proved coupled common fixed point theorems for mappings satisfying 

nonlinear contractive conditions in partially ordered complete metric spaces and generalized the results given in [3]. 

Sabetghadam et al. [5] employed these concepts to obtain coupled fixed point in the frame work of cone metric 

spaces. Lakshmikantham and Ćirić [4] introduced the concepts of coupled coincidence and coupled common fixed 

point for mappings satisfying nonlinear contractive conditions in partially ordered complete metric spaces. The 

study of fixed points for multi-valued contractions mappings using the Hausdorff metric was initiated by Nadler [1] 

and Markin [6]. Later, an interesting and rich fixed point theory for such maps was devel-oped which has found 

applications in control theory, convex optimization, differential inclusion and economics (see [7] and references 

therein). Klim and Wardowski [8] also obtained existence of fixed point for set-valued contractions in complete 

metric spaces. Dhage [9,10]established hybrid fixed point theorems and gave some applications (see also [11]). 

Hong in his recent study [12] proved hybrid fixed point theorems involving multi-valued operators which satisfy 
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weakly generalized contractive conditions in ordered complete metric spaces. The study of coincidence point and 

common fixed points of hybrid pair of mappings in Banach spaces and metric spaces is interesting and well 

developed. For applications of hybrid fixed point theory we refer to [13-16]. For a survey of fixed point theory and 

coincidences of multimaps, their applications and related results, we refer to [16-22]. 

The aim of this article is to obtain coupled coincidence point and common fixed point theorems for a pair of 

multi-valued and single valued mappings which satisfy generalized contractive condition in complete metric spaces. 

It is to be noted that to find coupled coincidence points, we do not employ the condition of continuity of any 

mapping involved therein. Our results unify, extend, and generalize various known comparable results in the 

literature. 

 

2. Main results 
In the following theorem we obtain coupled coincidence and common fixed point for hybrid pair of mappings 

satisfying a generalized contractive condition.  

Theorem . 2.1 Let (X, d) be a metric space, F : X × X → CB(X) and g : X → X be map-pings satisfying  

H(F(x, y), F(u, v)) ≤  a1 d(F(x, y), gx) + a2 d(F(x, y), gu)  

+ a3d(F(u, v), gx) +a4d(F(u, v), gu)                  (2.1) 

for all x, y, u, v ∈ X, where ai = ai (x, y, u, v), i = 1, 2, ..., 4, are nonnegative real numbers such that 

a1 + a2 + a3 + a4 ≤ h<1        (2.2) 

where h is a fixed number. If F(X ×X) ⊆ g(X) and g(X) is complete subset of X, then F and g have coupled 

coincidence point. Moreover F and g have coupled common fixed point if one of the following conditions holds. 

(a) F and g are w- compatible, 
n n

n n
lim g x u and lim g y v
 

    for some (x, y) ∈ C(F, g), u, v ∈ X and g is 

continuous at u and v. 

(b) g is F- weakly commuting for some (x, y) ∈ C(g, F), g
2
x = gx and g

2
y = gy.  

(c) g is continuous at x, y for some (x, y) ∈ C(g, F) and for some u, v ∈ X,         
n n

n n
lim g v y and lim g v y
 

   

(d) g(C(g, F)) is singleton subset of C(g, F). 

Proof. Let x0, y0 ∈ X be arbitrary. Then F (x0, y0) and F (y0, x0) are well defined. Choose gx1 ∈ F (x0, y0) and gy1 

∈ F (y0, x0). This can be done because F (X × X) ⊆ g (X). If a1 = a2 = a3 = a4 = 0, then 

d(gx1 , F(x1 , y1 )) ≤ H(F(x0, y0 ), F(x1 , y1 )) = 0. 

Hence d(gx1, F (x1, y1)) = 0. Since F (x1, y1) is closed, gx1 ∈F (x1, y1). Similarly gy1 ∈ F(y1, x1). Thus (x1, y1) is a 

coupled coincidence point of {F, g} and so we finish the proof. Now assume that ai >0, for some i = 1, ..., 4. Then h 

>0 and so there exist z1 ∈ F(x1, y1) and z2 ∈ F (y1, x1) such that   

 d(gx1 , z1 ) ≤ H(F(x0, y0 ),F(x1 , y1 )) + 
nh

2
  

d(gy1 , z2 ) ≤ H(F(y0, x0 ), F(y1 , x1 )) + 

nh

2  
 

Since F(X × X) ⊆ g(X), there exist x2 and y2 in X such that z1 = gx2 and z2 = gy2. 

Thus   

 d(gx1 , gx2 ) ≤ H(F(x0, y0 ), F(x1 , y1 ))+

 

nh

2
 

d(gy1 , gy2 ) ≤ H(F(y0,x0 ), F(y1 ,x1 ))    + 

nh

2  
Continuing this process, one obtains two sequences {xn} and {yn} in X such that 

gxn+1  ∈ F(xn , yn) and gyn+1  ∈ F(yn, xn ), 
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d(gxn , gxn+1 ) ≤ H(F(xn−1 , yn−1 ), F(xn , yn)) + 

nh

2  

d(gyn , gyn+1 ) ≤ H(F(yn−1 ,xn−1 ), F(yn ,xn)) + 

nh

2   
From (2.1), we have  

d(gxn , gxn+1 ) 

≤ H(F(xn−1 , yn−1 ), F(xn , yn )) +

nh

2
 

≤  a1 d(F(xn−1 , yn−1 ), gxn−1 ) + a2d(F(xn−1 , yn−1 ), gxn ) + a3d (F(xn, yn ), gxn−1)  

 + a4 d(F(xn , yn), gxn )+

 

nh

2
  

≤  a1 d(gxn ,gxn−1  ) + a3d(gxn+1 ,gxn−1 ) + a4d(gxn+1 ,gxn )+

 

nh

2
 

≤  a1 d(gxn ,gxn−1  ) + a3d(gxn+1 ,gxn ) + a3d(gxn ,gxn-1 )+ a4d(gxn+1, gxn )+

 

nh

2
 

(a1 + a3 )d(gxn−1 , gxn ) + (a3 + a4 )d(gxn , gxn+1 ) +

nh

2
 

and it follows that 

(1 – a3 – a4 ) d(gxn , gxn+1 ) ≤ (a1 + a3  ) d(gxn−1 , gxn ) + 

nh

2
  (.2.3) 

Similarly it can be shown that, 

(1 – a3 – a4 ) d(gyn , gyn+1 ) ≤ (a1 + a3  ) d(gyn−1 , gyn ) + 

nh

2
  (2.4) 

Again, 

d(gxn+1 , gxn ) 

≤ H(F(xn , yn ),F(xn−1 , yn−1 )) +

nh

2
 

≤  a1 d(F(xn , yn ), gxn ) + a2d(F(xn , yn), gxn-1 ) + a3d(F(xn-1 , yn-1 ), gxn )  

+ a4 d(F(xn-1 , yn-1), gxn-1 )+

 

nh

2
  

≤  a1 d(gxn+1 ,gxn  ) + a2d(gxn+1 ,gxn−1 ) + a4d(gxn+1 ,gxn-1 )+

 

nh

2
 

≤  a1 d(gxn+1 ,gxn  ) + a2d(gxn+1 ,gxn ) + a2d(gxn ,gxn-1 )+ a4d(gxn ,gxn-1 )+

 

nh

2
 

≤ (a1 + a2 )d(gxn+1 , gxn ) + (a2 + a4 )d(gxn , gxn-1 ) +

nh

2
 

Hence 

(1 – a1 – a2 ) d(gxn+1 , gxn ) ≤(a2 + a4  ) d(gxn−1 , gxn ) + 

nh

2
    (2.5) 

And  
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(1 – a1 – a2 ) d(gyn+1 , gyn ) ≤(a2 + a4  ) d(gyn−1 , gyn ) + 

nh

2
               (2.6) 

Let 

δn  = d(gxn , gxn+1 ) + d(gyn , gyn+1 ). 

Now, from (2.3) and (2.4), and respectively (2.5) and (2.6), we obtain: 

(1 – a3 – a4) δn  ≤ (a1 + a3 ) δn−1 +

nh

2
      (2.7) 

(1 – a1 – a2) δn  ≤ (a2  + a4 ) δn−1 +

nh

2
      (2.8) 

Adding (2.7) and (2.8) we get 

(2 – a1 – a2 – a3 – a4) δn  ≤ (a1 + a2 + a3 + a4  ) δn−1 + h
n
.    (2.9) 

Since by (2.2), a1 + a2 + a3 + a4  ≤ h <1,  so we have 

a1 + a2 + a3 + a4 = 2(a1 + a2 + a3 + a4 ) – a1 – a2 – a3– a4  

        ≤ 2h − (a1 + a2 + a3 + a4) 

                             ≤ 2h − h(a1 + a2 + a3 + a4) 

           = h (2 – a1 – a2 – a3 – a4) . 

Thus from (2.9) we get 

(2 − a1 – a2 – a3 – a4) δn  ≤ h (2 − a1 – a2 – a3 – a4) δn−1 + h
n
 . 

Hence, as 1/(2 - a1 – a2 – a3 – a4) <1, 

δn  ≤ hδn−1 + h
n
. 

Thus we have 

δn  ≤ h(hδn−2 + h
n−1

 ) + h
n
  = h

2
 δn−2 + 2h

n
. 

Continuing this process we obtain 

δn  ≤ h
n
 δ0 + nh

n
        (2.10) 

By the triangle inequality and (2.10), for m, n ∈ N with m > n, we have 

d(gxn , gxm+n ) + d(gyn , gym+n ) 

≤ d(gxn , gxn+1 ) + d(gxn+1 , gxn+2 ) + · · · + d(gxn+m−1 , gxm+n ) +d(gyn , gyn+1 ) 

 + d(gyn+1 , gyn+2 ) . . . + d(gyn+m−1 , gym+n )  

≤(h
n
δ0 + nh

n
 ) + (h

n+1
 δ0 + (n + 1)h

n+1
 ) + · · · + (h

n+m−1
 δ0 + (n + m − 1) h

n+m−1
 ) +(h

n
δ0 + nh

n
 ) + (h

n+1
 δ0 + (n + 

1)h
n+1

) + · · · + (h
n+m−1

 δ0  

+ (n + m − 1)h
n+m−1

 ).  

Thus 

d(gxn , gxm+n ) + d(gyn , gym+n )≤.

n m 1 n m 1
i i

0

i n i n

h ih
   

 

    

Since h <1, we conclude that {gxn} and {gyn} are Cauchy sequences in g(X). Since g(X) is complete, there exist x, y 

𝜖 X such that gxn → gx and gyn → gy. Then from (2.1), we obtain 

d(F(x, y), gx)    ≤ d(F(x, y), gxn+1 ) + d(gxn+1 , gx)  

  ≤ H(F(x, y), F(xn , yn )) + d(gxn+1 , gx)  

     ≤ a1d(F(x, y), gx) + a2 d(F(x, y), gxn ) 

+ a3 d(F(xn , yn), gx)  +a4d(F(xn , yn ), gxn ) +d(gxn+1,gx)  

                      ≤ a1d(F(x, y), gx) + a2 d(F(x, y), gxn )  

                      + a3 d (gxn+1 ,gx) +a4d(gxn+1 ,gxn )  +d(gxn+1,gx) 

On taking limit as n → ∞, we have 

d(F(x, y), gx) ≤ (a1 + a2)d(F(x, y), gx), 

which implies that d(F(x, y), gx) = 0 and hence F(x, y) = gx. Similarly, F(y, x) = gy. Hence (x, y) is 

coupled coincidence point of the mappings F and g. Suppose now that (a) holds. Then for some (x, y) 

∈ C(F, g), 
n n

n n
lim g x u and lim g y v
 

  , where u, v ∈ X. Since g is continuous at u and v, so 

we have that u and v are fixed points of g. As F and g are w- compatible, g
n
x ∈C(F, g) for all n ≥ 1 

and g
n
x ∈F(g

n-1
x, g

n-1
y). 
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Using (6.2.1), we obtain, 

d(gu, F(u, v)) ≤ d(gu, g
n
 x) + d(g

n
 x, F(u, v)) 

≤d(gu, g
n
 x) + H(F(g

n−1
 x, g

n−1
 y), F(u, v))  

≤d(gu, g
n
 x) +  a1 d(F(g

n−1
 x, g

n−1
 y), g

n
 x) +  a2d(g

n
 x, gu) + a3d(F(u, v), g

n
 x) + a4d(F(u, v), gu).  

On taking limit as n → ∞, we have 

d(gu, F(u, v)) ≤ (a3 + a4 )d(gu, F(u, v)), 

which implies d(gu, F(u, v)) = 0 and hence gu ∈ F(u, v). Similarly, gv ∈ F(v, u). Con-sequently u = gu ∈ F(u, v) and 

v = gv ∈ F(v, u). Hence (u, v) is a coupled fixed point of Fand g. Suppose now that (b) holds.  

If for some (x, y) ∈ C(F, g), g is F- commuting, g
2
x = gx and g

2
y = gy, then gx = g

2
x ∈ F(gx, gy) and gy = g

2
y ∈ 

F(gy, gx). Hence (gx, gy) is a coupled fixed point of F and g. Suppose now that (c) holds and assume that for some 

(x, y) ∈ C(g, F) and for some u, v ∈ X, 
n n

n n
lim g u x and lim g v y
 

  . By the continuity of g at x and y, we 

get x = gx ∈ F(x, y) and y = gy ∈ F(y, x). Hence (x, y) is coupled fixed point of F and g. Finally, suppose that (d) 

holds. Let g(C(F, g)) = {(x, x). Then {x} = {gx} = F(x, x). Hence (x, x) is coupled fixed point of F and g. ■ 

Now we present following example to support our Theorem( 2.1). 

Exam ple  3. Let X = [1, 5] and F : X × X → CB(X), g : X →  X be defined as follows: 

F(x, y) = [2, 3] for all x,  y ∈ X,  

g(x) = 5− 
3

5
x, for all x ∈ X. 

Then H(F(x, y), F(u, v)) = 0 for all x, y, u, v ∈ X. Therefore, F and g satisfy (2.1) for any ai ∈ [0, 1), i = 1, 2, ..., 4. 

Also (2,4) ∈ X × X is a coupled coincidence point of hybrid pair {F, g}. Note that F and g do not satisfy anyone of 

the conditions from (a)- 

(d) of Theorem ( 2.1) and do not have a coupled common fixed point. 

If in Theorem  (2.1) g = I (I = the identity mapping), then we have the following result. 

Corollary.4. Let (X, d) be a complete metric space, F : X × X → CB(X) be a map-ping satisfying 

H(F(x, y), F(u, v)) ≤ a1d(F(x, y), x) + a2d(F(x, y), u)  

+ a3d(F(u, v), x) + a4d(F(u, v), u) 

for all x, y, u, v ∈ X, where ai = ai(x, y, u, v), i = 1, 2, ..., 4, satisfy (2.2). Then F has a coupled fixed point. 

Corollary 5. Let (X, d) be a metric space, F : X × X → CB(X) and g : X → X be mappings satisfying 

H((F(x, y), F(u, v)) ≤
2

k
 [d(gx, gu) + d(gy, gv)]    (2.11) 

for all x, y, u, v ∈ X, where k ∈ [0, 1). If F(X × X) ∈ g(X) and g(X) is complete subset of X, then F and g have a 

coupled coincidence point in X. Moreover, F and g have a coupled common fixed point if anyone of the conditions 

(a)-(d) of Theorem 8 holds. 

Corollary  6. Let (X, d) be a complete metric space, F : X × X → CB(X) 

 be a map-ping satisfying 

H((F(x, y), F(u, v)) ≤
2

k
 [d(x, u) + d(y, v)] 

for all x, y, u, v ∈ X, where k ∈ [0, 1), then F has a coupled fixed 

 point in X. 
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