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Abstract 

ZnS nanoparticles were synthesized using wet chemical co-precipitation method. During synthesis, polyethylene 

glycol (PEG) and carboxylmethly cellulose (CMC) molecule were used as capping agents. The effect of the 

capping materials was analyzed for their effectiveness in limiting the growth of  ZnS nanoparticles. The prepared 

ZnS nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy 

dispersive X-rays (EDX). The estimated crystal sizes from XRD are 3.92 nm and 3.89 nm for ZnS/PEG and 

ZnS/CMC nanosize semiconductors respectively. The effect of capping agent on the energy band gap of the 

capped ZnS nanoparticles were blue shifted at 0.16 eV and 0.28 eV for ZnS/PEG and ZnS/CMC respectively. 

Fourier transform infrared spectroscopy (FTIR) confirms the interaction of the capping agents with ZnS. 

Key words: ZnS nanoparticles, capping agent, polyethylene glycol, precipitation and sodium carboxymethyl 

cellulose  

 

1.0  Introduction 
  Capping agent with functionalized long-chain which helps to spatially confine electron (hole) on nanoparticles 

is believed to alter the physical, optical, electronic, catalytic and magnetic properties of semiconductor materials 

by limiting their particle growth at the beginning of their formation. These optoelectronic properties which 

include changes in semiconductor emission color with size, improved solubility in solvents and improved 

catalytic properties are dependent on capping of the nanoparticles (Borah et al. 2008; Borah & Sarma 2008 and 

Park et al. 2009). 

 Several researchers have used different organic materials such as polyethylene glycol (PEG), carboxylmethyl 

cellulose (CMC) to stop particle agglomeration and to obtain mono-dispersed nanoparticles of sizes less than 5 

nm (Gupta et al. 2006 and Luna-Martinez et al. 2011). Recently, our report on the influence of Polyvinyl alcohol 

and alpha-methacrylic acid on ZnS nanoparticles revealed particle sizes of 3.75 nm and 2.60 nm respectively 

(Amah et al. 2012). 

 Zinc Sulfide (ZnS) is a group II-VI semiconductor with a wide direct band gap ranging from 3.5 to 3.7 eV at 

room temperature (Murali-Krishna  et al. 2010). This semiconductor has attracted much research interest due to 

its excellent properties and low toxicity when compared to other chalcogenides (Luna-Martinez   et al. 2011; 

Mamun et al. 2011; Ashish  et al. 2011a and Ashish et al. 2011b). These properties make ZnS suitable for 

several applications in electronic devices, bioelectronics, biosensor fluorescence, phosphors and light emitting 

devices (Haresh et al. 2011). As a direct band gap semiconductor, ZnS exhibits momentum conservation in the 

process of  light emission with regards to electro-photo luminescence phenomena (Mamun  et al. 2011). In 

addition, the emission efficiency and thermal stability of ZnS increases upon reduction of the particle size as a 

result of confinement of electrons and holes (Murugadoss et al. 2010). 

A number of synthetic methods have been used for the preparation of ZnS nanoparticles.  Such methods include; 

precipitation method (Di-Stefano  et al. 2010), sol–gel technique (Arachchige  & Brock  2007; Hebalkar  et al. 

2001), solid state reaction method (Calandra  et al. 2003), micro emulsion (Rubio, G. 2010), chemical vapor 

deposition (Verma  et al. 2009), hydrothermal technique (Gnanam  & Rajendran  2011) etc. 

  

In this paper, chemical co-precipitation method with suitable capping agents is used to synthesize the ZnS 

nanoparticles in order to control the particle size and enhance stability. This synthetic method is simple, 

economical and has the advantages of producing size-controlled and un-agglomerated nanoparticles. 

 

2.0 Materials and Method 

2.1 Materials                                                                                                                 

 Zinc sulphate heptahydrate (ZnSO4
.
7H2O), sodium sulphide nonahydrate( Na

2
S

.
9H

2
O), ethanol, polyethylene 

glycol (PEG) and sodium carboxylmethyl cellulose (CMC). All chemicals used were of analytical grade and 

were used as purchased without further purification. 
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2.2 Preparation of ZnS:PEG and ZnS:CMC nanoparticles 

 In a typical process, 0.3M PEG, 0.3M CMC were dissolved in deionized water separately and stirred with 

magnetic stirrer at room temperature until they formed clear solutions. In a separate container, 8.78g of 

zincsulphate heptahydrate was dissolved in 100ml of deionized water and then added to the PEG, CMC water 

solutions. 9.60g of Na2S.9H2O dissolved in 100ml of deionized water was then added drop-wise to the precursor-

surfactant mixtures (i.e. Zn
2+

/PEG, Zn
2+

/CMC mixtures) at room temperature under continuous stirring for 

30minutes until white precipitates were formed. The white precipitate was separated by centrifugation at 3500 

rpm for 20minutes, and washed several times with ethanol. The white precipitates were then filtered and dried at 

about 120
o
C under air oven for two hours. The dried solids were then made into fine powders by grinding. 

2.3 Method of Analysis 

Optical absorption spectra of the samples dispersed in ethanol were recorded using a UV-Visible 

spectrophotometer (Heλios-V4024).The structures were analyzed by X-ray diffraction (XRD) measurements 

using PAN analytical X-ray diffraction machine with Cu Kα radiation (λ = 0.154056 nm). Carl-Zeiss MA-10 

series scanning electron microscope (SEM) with energy dispersive x-ray analysis (EDX) was used to obtain the 

morphology and elemental compositions of the prepared capped ZnS nanoparticles. FTIR spectra were recorded 

in an FTIR spectrometer (Shimadzu FTIR-8400S) to verify the presence and effect of the capping agents. 

 

3.0. Results and Discussion 

3.1. UV-visible results 

 Fig.1 shows the absorption spectra for ZnS/PEG and ZnS/CMC nanoparticles. The energy band gaps of the 

synthesized nanoparticles were obtained from Tauc’s formula (Pankov 1971): 

                                                   �(ν) = 
�(�����)

��



                                                      (1) 

where �(ν) is the absorption coefficient, � = 

�  for allowed direct transition, Eg is the optical band gap, hν is the 

photon energy and A is a constant related to the extent of the band tailing. Fig. 2 shows a plot of (�hν)
2
 against 

photon energy (hν), the energy band gap of the material was estimated by extrapolating the straight-line portion 

of the spectrum to the energy axis where (�hν)
2
 = 0. The obtained optical band gap of ZnS/PEG and ZnS/CMC 

are 3.76 eV and 3.88 eV, respectively. These band gap values are 0.16 eV and 0.28 eV   blue shifted from the 

bulk  ZnS value of 3.60 eV (Masoud  et al. 2009).  

Nanoparticles sizes were estimated using the hyperbolic band model (HBM) (Auxier  et  al. 2004) given by 

equation (2); 
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where  Eg is the energy band gap of the nanoparticles, R is the particle’s radius and m
*
 is the electron mass.  

Particles sizes were also calculated using the effective mass approximation (EMA) proposed by Brus in 1983 

(Rajesh & Ryan 2008) given by equation (3); 
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where Eb is the energy of bulk ZnS, mh
*
 is the effective mass of hole,  ε* is the permittivity in free space, ε is 

permittivity of material, e is the electronic charge and all other symbols have their meanings as it was for 

equation (2). 

 The estimated particle sizes from both models are presented in the Table 1. The results indicated that zinc 

sulfide capped with CMC has a larger band gap and smaller average particles size when compared with ZnS 

capped with PEG. The results revealed better surface passivation of  ZnS nanoparticles when capped with CMC. 

This might be because CMC consist of two functional groups, that is; the carbonyl and the hydroxyl groups. The 

presence of these functional groups ensures nanoparticle’s surface stabilization through electrostatic repulsive 

forces while the larger molecular weight of CMC prevented particles growth through steric hindrances. In the 

case of  PEG the only functional group is the hydroxyl group, which together with the high molecular weight of 

PEG restricts particles growth mainly by steric hindrances. From Table 1, the HBM gave smaller average 

particle sizes for the capped ZnS nanoparticles when compared to the particle sizes estimated from EMA. The 

reason for this variation in particle sizes have been reported elsewhere (Sharma et al. 2009). 
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Table 1: Calculated particle sizes of capped ZnS nanoparticles from band gap  

               variation using HBM and EMA models. 

S/N 

 

Sample 

name 

Band-gaps 

(eV) 

Hyperbolic band 

model(HBM) 

particle size(nm) 

Electron-mass approximation  

model(EMA) 

Particle size(nm) 

1. ZnS-PEG   3.76     6.78     9.00 nm 

2. ZnS-CMC   3.88    5.09     5.24 nm 

 

                  

Figure 1: Absorption spectrum of ZnS/PEG and ZnS/CMC 
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3.2 Structural and mophological results 

 The powder X-ray diffraction pattern of ZnS/PEG and ZnS/CMC semiconductor nanoparticles are shown in Fig. 

3( a and b), respectively. All the three peaks can be assigned to a zinc blende crystal structure without extra 

phases. The broadening of the peaks indicates the formation of ZnS nanoparticles (Murugadoss et al. 2010).  

The average particle sizes (D in nm) were calculated from XRD patterns using the Scherrer’s equation;  

                                        - = ./
01234                                                               (5) 

where k is a constant which equals to 0.89, λ is the X-ray wavelength which equals to 0.154056 nm, β is the full 

width at half maximum intensity (FWHM) and θ is the  diffraction angle. 

 

The calculated average crystallite sizes of the nanoparticles are 3.92 nm and 3.89 nm for ZnS/PEG and 

ZnS/CMC, respectively. These values agree fairly well with the particle sizes calculated from EMA and HBM 

using band gap values from the optical absorbance spectrum. 
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1/2 

against photon energy(hν) for ZnS/PEG and  ZnS/CMC 
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Figure 3: XRD patterns of capped (a) ZnS/PEG and (b) ZnS/CMC 

 

3.3 Electron microscopy and EDX result. 

 The surface morphology of the samples was studied using a scanning electron microscope (SEM). Figures 4 (a 

and b) show the SEM micrographs of ZnS nanoparticles capped with PEG and CMC, respectively. The 

micrographs show that the particles had smooth surfaces as a result of their passivation by both PEG and CMC. 

The EDX spectra shown in figures 5 (a and b) revealed that the samples were pure ZnS nanoparticles. The 

carbon and aluminum peaks shown in the spectrum may be coming from the carbon coated aluminum grid used. 

 

(a) ZnS/PEG 

(b) ZnS/CMC 

56 
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 Figure 4: SEM surface micrograph of capped (a) ZnS/ PEG and (b) ZnS/C

 

Figure 5: Elemental composition of capped: (a) ZnS/PEG and (b) ZnS/CMC 

The presence of the capping agent in the synthesized ZnS nanoparticles was examined by recording their FTIR 

spectra in the range of 500 - 4500cm
-1

. 
 
Figure 6 depicts the spectra of ZnS/PEG nanoparticles with absorption 

peaks at 1561.43cm
-1

 assigned to the bending vibration mode of water molecule and 3484.52cm
-1

 indicating –

OH stretching of the hydroxyl group. The peak noted at 2932.83 cm
-1

 indicates the presence of -CH2 symmetric 

stretch bond. In addition, the peaks at 1691.63cm
-1

and 1428.34cm
-1

 are due to C=O and C-H stretching and 
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bending bonds respectively which may result to co-ordinate bonding between PEG and Zn
2+

 .This indicates 

capping of ZnS nanoparticles as a result steric repulsive effect from PEG.  

Figure 7 shows the FTIR spectrum of ZnS/CMC sample. The IR band characteristics of the spectrum shows that  

the band associated to carboxylic groups has a wave-number of 1615.44cm
-1

 for C=O stretching and 1474.63cm
-

1 
for C-O stretching . This can be linked to their strong interaction with the Zn

2+
 ions forming a Zn–CMC 

complex during the in - situ precipitation process. In addition, the peak at 2914.54cm
-1

 indicated the presence of 

O-H group of the capped ZnS/CMC. The presence of the carbonyl and hydroxyl group is confirmation that there 

was a strong interaction between zinc precursor and CMC molecules. The presence of these functional groups is 

also a confirmation that electrostatic stabilization occurred during precipitation of ZnS/CMC nanoparticles. The 

adsorption of CMC on ZnS nanocrystal surface ensured the stability of the nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: FTIR spectrum of ZnS/PEG 

  

  

  

  

 

Wavenumber   (cm
-1

) 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.21, 2013         

 

16 
 

 
 

Figure 7: FTIR spectrum of ZnS/CMC 

 

4.0 Conclusion 

  The synthesized ZnS nanoparticles by simple chemical method revealed that CMC is a better nanoparticles 

stabilizer than PEG because of the presence of a strong electrostatic stabilization of both the carbonyl and 

hydroxyl groups.  Absorption band of both ZnS/PEG and ZnS/CMC were slightly blue shifted from that of the 

bulk indicating weak confinement. The particle sizes calculated show that smaller particle size of 3.89 nm was 

obtained for the ZnS/CMC than the ZnS/PEG nanocrystals with size of 3.92 nm. The variation in particle size 

due to the presence of the hydroxyl and carbonyl functional groups in the ZnS/CMC confirmed the assertion 

above. 
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