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I. Introduction 
Fractional calculus is the branch of mathematics which deal with the investigation and applications of integrals 
and derivatives arbitrary order. Due to the growing range of applications, there has been significant interest in 
developing transforms for the solution of fractional differential equations. 
Integral transforms are the most useful techniques of the mathematics which are used to find the solutions of 
differential equations, partial differential equations, integro-differential equations, partial integro- differential 
equations, delay differential equations and population growth. 
In this paper we apply a new integral transform, called Saxena & Gupta transform, for solving a system of 
ordinary differential equations. Integral transformations essential for solving complex problems in engineering, 
natural sciences, computers, optical sciences, and modern mathematics to a simple system of algebraic equations 
that can be solved easily.  
 
Definition : 
Let  𝑓(𝑡)  be a function of 𝑡 ≥ 0.  The new transform of a function 𝑓(𝑡)  is defined as follows, see in [ 7 ] 

𝑓(𝜐) = 𝑍[𝑓(𝑡)] =
ଵ

జ
∫ 𝑓(𝜐𝑡)𝑒ି௧𝑑𝑡

ஶ

଴
                    ………………. (1.1) 

 
The above integral convergent. 
 
Saxena & Gupta transform of derivatives :- 
 

i.𝑍{𝑓ᇱ(𝑡)} =
ி(జ)

జ
−

௙(଴)

జమ  

 

ii.𝑍{𝑓ᇱᇱ(𝑡)} =
ி(జ)

జమ −
௙(଴)

జయ −
௙ᇲ(଴)

జమ  

 

iii.𝑍{𝑓௡(𝑡)} =
ி(జ)

జ೙ −
௙(଴)

జ೙శభ −
௙ᇲ(଴)

జ೙ −
௙ᇲᇲ(଴)

జ೙షభ  
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Table 1-- Saxena & Gupta transform of some elementary function 
S.NO. Function 

𝑓(𝑡) 
New transform 

𝑍[𝑓(𝑡)] 
1 1 1

𝜐
 

2 𝑡 1 

3 
 

𝑡ଶ 2ʋ 

4 𝑡௡  𝑢௡ିଵΓ(n + 1) 

5 𝑒௔௧  1

𝜐 (1 − 𝑎𝜐)
 

6 𝑠𝑖𝑛𝑎𝑡 𝑎

1 + 𝑎ଶ𝑣ଶ 
 

7 𝑐𝑜𝑠𝑎𝑡 1

𝜐 (1 + 𝑎ଶ𝑣ଶ )
 

8 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎

1 − 𝑎ଶ𝑣ଶ 
 

9 𝑐𝑜𝑠ℎ𝑎𝑡 1

𝜐 (1 − 𝑎ଶ𝑣ଶ )
 

 
II.Application of Saxena and Gupta Transform of Certain system of Ordinary Differential Equations. 
As specified in the introduction of this paper, the Saxena and Gupta transform can be used as an effective tool. For 
analysing the basic properties of a linear system governed by the differential equation in response to initial data. 
The following examples illustrate the use of the Saxena and Gupta transform in solving certain initial value 
problems described by system of ordinary differential equations[1],[2],[3] 
 
Theorem (2.1)- Consider the system of differential equations 
. 
ௗ௫

ௗ௧
+ 𝑦 = 2𝑐𝑜𝑠𝑡                                           ......……………. (2.1.1) 

            
ௗ௬

ௗ௧
− 𝑥 = 1                                                     ….……....….... (2.1.2)                        

with initial condition 𝑥(0) = 1 𝑎𝑛𝑑 𝑦(0) = 1 
Solution : To obtain the solution of system of ordinary differential equations first we Applying the Saxena & 
Gupta transform of both side of eq. (2.1.1) and (2.1.2) 

 𝑍(
ௗ௫

ௗ௧
) + 𝑍(𝑦) = 2𝑍(𝑐𝑜𝑠𝑡) 

                                                        z ቀ 
ௗ௬

ௗ௧
ቁ − 𝑧(𝑥) = 𝑧(1)    

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  
 
ீభ (௨)

௨
−

௫(଴)

௨మ  +𝐺ଶ(𝑢) =
ଶ

௨(ଵା௨మ)
                                   ……………..(2.1.3) 

ீమ (௨)

௨
−

௬(଴)

௨మ  -𝐺ଵ(𝑢) =
ଵ

௨
                                             ………………(2.1.4) 

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢); 

𝐺ଵ(𝑢) =
௨మ

௨(ଵା௨మ)
=

ଵିଵି௨మ

௨(ଵା௨మ)
=

ଵ

௨(ଵା௨మ)
−

ଵ

௨
                      …………… (2.1.5) 

𝐺ଶ(𝑢) =
௨ାଵ

௨(ଵା௨మ)
=

ଵ

(ଵା௨మ)
+

ଵ

௨(ଵା௨మ)
                                …………… (2.1.6) 

 
Applying inverse Saxena & Gupta transforms 

𝑧ିଵ(𝐺ଵ(𝑢)) = 𝑧ିଵ ൬
1

𝑢(1 + 𝑢ଶ)
൰ − 𝑧ିଵ ൬

1

𝑢
൰ 
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𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑧ିଵ ቀ
ଵ

(ଵା௨మ)
ቁ

ଵ

(ଵା௨మ)
+ 𝑧ିଵ ቀ

ଵ

௨(ଵା௨మ)
ቁ      

since     𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑥(𝑡)𝑎𝑛𝑑 𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑦(𝑡)            
Thus required solution of given differential equations are  
𝑥(𝑡) = 𝑡𝑐𝑜𝑠𝑡 − 1                                                                    ………….. (2.1.7) 
 𝑦(𝑡) = 𝑡𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡                                                             …………… (2.1.8) 
Theorem -(2.2)- Find the solution of the system of the differential equations 

                       
ௗ௫

ௗ௧
+ 𝛼𝑦 = 0                                                        …………… (2.2.1)     

                     
ௗ௬

ௗ௧
− 𝛼𝑥 = 0                                                           ……........ (2.2.2)   

with initial conditions𝑥(0) = 𝑐ଵ𝑎𝑛𝑑𝑦(0) = 𝑐ଶ , where 𝑐ଵ𝑎𝑛𝑑𝑐ଶ are arbitrary constants     
Solution :To obtain the solution of system of ordinary differential equations first we  applying the Saxena & Gupta 
transform of both sides of eq. (2.2.1) and (2.2.2), we get 

 𝑍(
ௗ௫

ௗ௧
) + 𝛼𝑍(𝑦) = 0 

                                                              z ቀ 
ௗ௬

ௗ௧
ቁ − 𝛼𝑧(𝑥) = 0   

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  

           
ீభ (௨)

௨
−

௫(଴)

௨మ  +𝛼𝐺ଶ(𝑢) = 0                                                          …………(2.2.3) 

          
ீమ (௨)

௨
−

௬(଴)

௨మ  −𝛼𝐺ଵ(𝑢) = 0                                                 … … … … … … . . (2.2.4)  

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢); 
         𝐺ଵ(𝑢) =

௖భ

௨(ଵାఈమ௨మ) −
ఈ௖మ

(ଵାఈమ௨మ)                                              ………………. (2.2.5) 

        𝐺ଶ(𝑢) =
ఈ௖భ

(ଵାఈమ௨మ) +
௖మ

௨(ଵାఈమ௨మ)                                             ………………… (2.2.6) 

 Applying the inverse Saxena & Gupta transform both sides of the equation (2.2.5) and (2.2.6)  

                 𝑧ିଵ(𝐺ଵ(𝑢)) = 𝑧ିଵ ቀ
௖భ

௨(ଵାఈమ௨మ)ቁ − 𝑧ିଵ ቀ
ఈ௖మ

(ଵାఈమ௨మ)ቁ      

                𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑧ିଵ ቀ
ఈ௖భ

(ଵାఈమ௨మ)ቁ + 𝑧ିଵ ቀ
௖మ

௨(ଵାఈమ௨మ)ቁ     

since     𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑥(𝑡)𝑎𝑛𝑑 𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑦(𝑡)                          
 thus required solution of given differential equations are  
             𝑥(𝑡) = 𝑐ଵ𝑐𝑜𝑠𝛼𝑡 − 𝑐ଶ𝑠𝑖𝑛𝛼𝑡                                          ……………. (2.2.7) 
𝑦(𝑡) = 𝑐ଵ𝑠𝑖𝑛𝛼𝑡 + 𝑐ଶ𝑐𝑜𝑠𝛼𝑡       
                                                                                               …………….. (2.2.8)   
Theorem -(2.3)- Find the solution of the system of ordinary differential equations 

                     
ௗ௫

ௗ௧
− 2𝑦 = 𝑐𝑜𝑠2𝑡                                                              …………… (2.3.1)     

                     
ௗ௬

ௗ௧
+ 2𝑥 = 𝑠𝑖𝑛2𝑡                                                                 ……...........(2.3.2)   

with initial conditions 𝑥(0) = 1 𝑎𝑛𝑑 𝑦(0) = 0 
Solution : To obtain the solution of system of ordinary differential equations first we applying the Saxena & Gupta 
transform of both sides of eq. (2.3.1) and (2.3.2), we get 

                                 𝑍 ቀ
ௗ௫

ௗ௧
ቁ − 𝑍(2𝑦) = 𝑍(𝑐𝑜𝑠2𝑡) 

                                  z ቀ 
ௗ௬

ௗ௧
ቁ + 𝑧(2𝑥) = 𝑧(𝑠𝑖𝑛2𝑡)    

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  

            
ீభ (௨)

௨
−

௫(଴)

௨మ − 2𝐺ଶ(𝑢) =
ଵ

௨(ଵାସ௨మ)
                                                   …………….. (2.3.3) 

            
ீమ (௨)

௨
−

௬(଴)

௨మ  +2𝐺ଵ(𝑢) =
ଶ

(ଵାସ௨మ)
                        ………………(2.3.4) 

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢); 

                𝐺ଵ(𝑢) =
ଶ

ଶ(ଵାସ௨మ) +
ଵ

௨(ଵାସ௨మ)                                                       ………………. (2.3.5) 

                𝐺ଶ(𝑢) =
ିଶ

(ଵାସ௨మ)
                                                                         ……………….. (2.3.6)  Applying the 

inverse Saxena & Gupta transform both sides of the equation (2.3.5) and (2.3.6) 

               𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑧ିଵ ቀ
ଶ

ଶ(ଵାସ௨మ)ቁ + 𝑧ିଵ ቀ
ଵ

௨(ଵାସ௨మ)ቁ      

                  𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑧ିଵ ቀ
ିଶ

(ଵାସ௨మ)
ቁ 

since     𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑥(𝑡)𝑎𝑛𝑑 𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑦(𝑡)   
 thus required solution of given differential equations are 
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                            𝑥(𝑡) = 𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡                                                                    …… (2.3.7) 
                             𝑦(𝑡) = −𝑠𝑖𝑛2𝑡                                                                             …….. (2.3.8) 
Theorem -(2.4)- Find the solution of the system of ordinary differential equations 

                       
ௗ௫

ௗ௧
+ 𝑦 = 𝑠𝑖𝑛𝑡                                                           …………… (2.4.1)     

                     
ௗ௬

ௗ௧
+ 𝑥 = 𝑐𝑜𝑠𝑡                                                           ……...........(2.4.2)   

with initial conditions 𝑥(0) = 0 𝑎𝑛𝑑 𝑦(0) = 2 
Solution :To obtain the solution of system of ordinary differential equations first we applying the Saxena & Gupta 
transform of both sides of eq. (2.4.1) and (2.4.2) 

                           𝑍 ቀ
ௗ௫

ௗ௧
ቁ + 𝑍(𝑦) = 𝑍(𝑠𝑖𝑛𝑡)     

                             z ቀ 
ௗ௬

ௗ௧
ቁ + 𝑧(𝑥) = 𝑧(𝑐𝑜𝑠𝑡)    

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  

                    
ீభ (௨)

௨
−

௫(଴)

௨మ + 𝐺ଶ(𝑢) =
ଵ

(ଵା௨మ)
                                                       …….. (2.4.3) 

                    
ீమ (௨)

௨
−

௬(଴)

௨మ  +𝐺ଵ(𝑢) =
ଵ

௨(ଵା௨మ)
                                                ………. (2.4.4) 

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢); 

                  𝐺ଵ(𝑢) =
ିଶ

(ଵି௨మ)                                                                              ………. (2.4.5) 

                  𝐺ଶ(𝑢) =
ଵ

(ଵା௨మ) +
ଶ

௨(ଵି௨మ)                                                             …….. (2.4.6) 

Applying the inverse Saxena & Gupta transform both side of the equation (2.4.5) and (2.4.6)   

𝑧ିଵ(𝐺ଵ(𝑢)) = 𝑧ିଵ ቀ
ିଶ

(ଵି௨మ)  ቁ     

𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑧ିଵ ቀ
ଵ

(ଵା௨మ)ቁ + 𝑧ିଵ ቀ
ଶ

௨(ଵି௨మ)ቁ     

since     𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑥(𝑡)𝑎𝑛𝑑 𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑦(𝑡)   
 thus required solution of given differential equations are 
𝑥(𝑡) = −2𝑠𝑖𝑛ℎ𝑡                                                                                     …………… (2.4.7) 
 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 + 2𝑐𝑜𝑠ℎ𝑡                                                                           ……………. (2.4.8) 
  
Theorem -(2.5)- Find the solution of the system of ordinal differential equations 

                       
ௗ௫

ௗ௧
= 𝑥 + 𝑦                                                                        …………… (2.5.1)     

                     
ௗ௬

ௗ௧
= 2𝑥 + 4𝑦                                                                   ..……...........(2.5.2)   

with initial conditions 𝑥(0) = 1𝑎𝑛𝑑 𝑦(0) = 2 
Solution:-  : To obtain the solution of system of ordinary differential equations first we  applying the Saxena & 
Gupta transform of both side of eq. (2.5.1) and (2.5.2) 

                             𝑍 ቀ
ௗ௫

ௗ௧
ቁ = 𝑍(𝑥) + 𝑍(𝑦) 

                              z ቀ 
ௗ௬

ௗ௧
ቁ = 2𝑧(𝑥) + 4𝑧(𝑦)    

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  

                     
ீభ (௨)

௨
−

௫(଴)

௨మ = 𝐺ଵ(𝑢) + 𝐺ଶ(𝑢)                                                                …….. (2.5.3) 

          
ீమ (௨)

௨
−

௬(଴)

௨మ  =2𝐺ଵ(𝑢) + 4𝐺ଶ(𝑢)                                                  …. (2.5.4) 

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢)  then applying inverse transforms we get the solution of given 
differential equations are  
𝑥(𝑡) = 𝑒ଶ௧ − 2𝑒ି௧ − 2𝑡 + 1         ……………… (2.5.5) 
𝑥(𝑡) = 𝑒ଶ௧ + 4𝑒ି௧ + 2𝑡 − 3         ………………. (2.5.6) 
 
Theorem -(2.6)- Find the solution of the system of the equations 

                       
ௗ௫

ௗ௧
+ 𝑦 = 𝑒௧                                                                            …………… (2.6.1)     

                     
ௗ௬

ௗ௧
− 𝑥 = −𝑡                                                                            ……...........(2.6.2)   

With initial conditions 𝑥(0) = 0𝑎𝑛𝑑 𝑦(0) = 0 
Solution:-  : To obtain the solution of system of ordinary differential equations first we applying the Saxena & 
Gupta transform of both sides of eq. (2.6.1) and (2.6.2) 

                                𝑍 ቀ
ௗ௫

ௗ௧
ቁ + 𝑍(𝑦) = 𝑧(𝑒௧) 
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                                  z ቀ 
ௗ௬

ௗ௧
ቁ − 𝑧(𝑥) = 𝑧(−𝑡)    

since 𝑧[𝑥(𝑡)] = 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝑧[𝑦(𝑡)] = 𝐺ଶ(𝑢)  
 

                          
ீభ (௨)

௨
−

௫(଴)

௨మ + 𝐺ଶ(𝑢) =
ଵ

௨(ଵି௨)
                                                               ….. (2.6.3) 

                 
ீమ (௨)

௨
−

௬(଴)

௨మ  −𝐺ଵ(𝑢) = −1                                … (2.6.4) 

Solving this equations for 𝐺ଵ(𝑢)𝑎𝑛𝑑 𝐺ଶ(𝑢); 

𝐺ଵ(𝑢) =
ଵା௨మି௨య

(ଵା௨మ) = 1 − 𝑢 +
௨

ଵା௨మ = 1 −
ଶ௨

ଶ
+

ଶ௨

ଶ(ଵା௨మ)
                                          ………. (2.6.5)                                                            

 𝐺ଶ(𝑢) =
ି௨ర

ଵା௨మ =  −𝑢ଶ + 1 +
ିଵ

ଵା௨మ                                                                        ……….. (2.6.6) 

Applying the inverse Saxena & Gupta transform both side of the equation (2.6.5) and (2.6.6)   

𝑧ିଵ(𝐺ଵ(𝑢)) = 𝑧ିଵ ቀ 1 −
ଶ௨

ଶ
+

ଶ௨

ଶ(ଵା௨మ)
 ቁ  

 = 𝑧ିଵ(1) − 𝑧ିଵ ቀ
ଶ௨

ଶ
ቁ + 𝑧ିଵ ቀ

ଶ௨

ଶ(ଵା௨మ)
 ቁ   

𝑧ିଵ൫𝐺ଶ(𝑢)൯ = 𝑧ିଵ ൬−𝑢ଶ + 1 +
−1

1 + 𝑢ଶ
൰ 

= 𝑧ିଵ(−𝑢ଶ) − 𝑧ିଵ(1) − 𝑧ିଵ ቀ
ିଵ

ଵା௨మ ቁ    

since     𝑧ିଵ൫𝐺ଵ(𝑢)൯ = 𝑥(𝑡)𝑎𝑛𝑑 𝑧ିଵ(𝐺ଶ(𝑢)) = 𝑦(𝑡)   
 thus required solution of given differential equations are 

𝑥(𝑡) = 𝑡 −
௧మ

ଶ
+

௧௦௜௡௧

ଶ
                                                                                   ……………. (2.6.7) 

𝑦(𝑡) =
ିଵ

ସ
𝑡ସ + 𝑡 − 𝑠𝑖𝑛𝑡                                                                                ………….  (2.6.8) 

 
Conclusion 
This innovative technique demonstrates greater effectiveness and ease of use in handling ordinary differential 
equations compared to conventional methods. Also this method is very efficient, simple and engineering 
applications , with the potential to extend its utility to a wide array of problems across various domains. The main 
goal of this research is to solve certain system of ordinary differential equations.     
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