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Abstract 
The structural phase transitions of plutonium pnictides (PuAs and PuSb) have been investigated. The Extented 

Interaction Potential (EIP) model has been developed (including the zero point energy effect in three body 

interaction potential model). The phase transition pressures and associated volume collapses obtained from 

present model show in general in good agreement with available experimental data than others. The elastic 

constants and modulus of elasticity are also reported.  
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1. Introduction 
Binary compounds formed by plutonium have attracted much attention owing to their unique physical and 

chemical properties. These properties make them interesting from the fundamental point of view, as well as for a 

variety of technical applications. The study of solid state properties of actinide compounds have been limited 

because of the care needed in handling the radioactive materials.  The very small quantities of these actinides are 

available. Less attention has been paid on neptunium and plutonium compounds. The studies on transplutoniums 

are rather seldom because of the consequence of the high activity of Np and Pu and transplutonium elements [1-

7]. The 5f electrons of these compounds show variable behaviour [8-10]. Plutonium pnictides are also related to 

the localized state of the 5f electrons.  

 Previously, the high pressure structural and elastic properties of plutonium compounds by using simple 

inter-atomic potential approach have been reported by Srivastava et. al. [11]. Electronic structures of plutonium 

compounds have been investigated by Petit et al. [12] using SIC-LSD scheme within the Tight-Binding Linear-

Muffin-Tin Orbitals (TB-LMTO) method. The phonon dynamics of the plutonium compounds (PuX; X = S, Se, 

Te, As, and Sb) by using rigid ion (RIM) and breathing shell models (BSM), later includes breathing motion of 

the electrons of the Pu-atoms due to f–d hybridization have been investigated by Arya et. al.[13]. Present 

plutonium pnictides crystallize in NaCl-type structure (B1) at normal conditions with space group Fm3m (225). 

Under pressure, the present compounds undergo a first-order phase transition from the sixfold-coordinated NaCl 

structure to the eightfold-coordinated CsCl-type structure (B2) with the space group symmetry Pm3m (221). 

Motivated from the fact that the earlier works have not been reported using the model calculation, we 

have applied our extended interaction potential (EIP) model for plutonium compounds. The necessitate inclusion 

of three body interaction forces was accentuated by many workers for the better corresponding of results [14-17]. 

Their calculations for B1-B2 transitions were stand on two-body potential mainly. They concluded that possible 

reason for disagreements include the failure of the two body potential model. Because these studies were based 

on two body potentials and could not explain Cauchy violations (C12≠C44). They observed that results could be 

better by including the effect of non-rigidity of ions in the model. To overcome these inconsistencies we have 

incorporated the charge transfer and zero point energy effect in our model for better comparison of results. In 

this paper, we have investigated the structural and elastic properties of actinide pnictides.  
1.1 Potential Model and Method of Calculation 

Application of pressure directly results in compression leading to the increased charge transfer (or three body 

interaction effect [18]) due to the deformation of the overlapping electron shell of the adjacent ions (or non-

rigidity of ions) in solids. Also we have considered zero point energy effects, which, is the lowest possible 

energy that the compound may possess. The energy of the compound is (ε= (hυ)/{e
hυ/kt

-1}+ (hυ)/2), here υ, h, t, 

and k are the frequency, plank constant, temperature and Boltzaman constant of the compound. It is clear from 

the above expression that even at absolute zero the energy of the compound cannot be zero but at least h . 

Hence there arises a need to include the zero point energy term in TBP approach for better agreement with 

experimental approaches. 

These effects have been incorporated in the Gibbs free energy (G = U+PV-TS) as a function of pressure 
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and three body interactions (TBI) [13], which are the most dominant among the many body interactions. Here, U 

is the internal energy of the system equivalent to the lattice energy at temperature near zero and S is the entropy. 

At temperature T=0K and pressure (P) the Gibbs free energies for rock salt (B1, real) and CsCl (B2, hypothetical) 

structures are given by: 

GB1 (r) = UB1(r) + PVB1(r)        (1)  

GB2 (r’) = UB2(r’) + PVB2(r’)       (2) 

 

With VB1 (=2.00r
3
) and VB2 (=1.54r’

3
) as unit cell volumes for B1 and B2 phases respectively. The first terms in (1) 

and (2) are lattice energies for B1 and B2 structures and they are expressed as: 

 

 

 

 

 (3) 

 

 

 

 

 

 

 (4) 

 

 

With αm and α’m as the Madelung constants for NaCl and CsCl structure respectively. C(C’) and D(D’) are the 

overall Vander Waal coefficients of B1 (B2) phases, βij (i,j=1,2) are the Pauling coefficients. Ze is the ionic 

charge and b (ρ) are the hardness (range) parameters, r (r’) are the nearest neighbour separations for NaCl (CsCl) 

structure f(r ) is the three body force parameter. 

The term 
2


1/2
 as the mean square frequency related to the Debye temperature (θD) as                                       

                      
2


1/2
 
2
=kθD/h                                             (5) 

Here, θD can be expressed as [13,14]                      

                     θD = (h/k) [(5rBT)/µ]
1/2

  

 

With BT and µ as the Bulk modulus and reduced mass of the compounds. 

These lattice energies consists of long range Coulomb energy (first term), three body interactions 

corresponding to the nearest neighbour separation r (r’) (second term), vdW (van der Waal) interaction (third 

term), energy due to the overlap repulsion represented by Hafemeister and Flygare (HF) type potential and 

extended up to the second neighbour ions (fourth, fifth and sixth terms), and last term indicates zero point energy 

effect term. 

1.1.1 Results and Discussion 

1.1.2 Structural properties 

The Gibbs free energies in eq. (1) and (2) contain three model parameters [b, ρ, f(r)]. The values of these model 

parameters have been computed using the following equilibrium conditions.    
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Using these model parameters and the minimization technique, phase transition pressures of present 

compounds have been computed. The input data of the crystal and calculated model parameters are listed in 

Table-1. 

We have followed the technique of minimization of Gibbs free energies of real and hypothetical phases. 

Then we have calculated the Gibbs free energy change (∆G ) of B1 and B2 phases. The phase transition occurs 

when ∆G approaches zero (∆G→0). At phase transition pressure (Pt) these compounds undergo a (B1-B2) 

transition associated with a sudden collapse in volume showing a first order phase transition. The values of ∆G 

with pressure have been plotted in Fig. 1. It is clear from this figure that our present computed phase transition 

pressure for B1-B2 structure transition in PuAs at 35.5 GPa, and PuSb at 21.0 GPa respectively. The present 

phase transition pressures have been illustrated by arrows in Fig. 1. The computed phase transitions pressures 

(Pt), obtained from the present model, and are given in Table-2.  

At high pressures, the materials undergo structural phase transition associated with an abrupt change in 

the volume. The discontinuity in volume at the transition pressure is obtained from the phase diagram. We have 

computed the relative volume changes V/V0 at different pressures. The values of volume change (%) have been 

tabulated in Table-2. The values of V/V0 have been plotted against the pressure in Fig. 2 for PuAs and in Fig. 3 

for PuSb. The variations of V/V0 with pressure for NaCl and CsCl phases have been studied in these graphs and 

compared with experimental results for both PuAs and PuSb. It is clear from this graph that when we increase 

the pressure the values of V/V0 decrease.  It is obvious from Table-2 that the computed values of phase 

transitions and volume collapses have been compared with available experimental and theoretical results. Our 

values shows better comparisons with experimental than other theoretical results. 

1.1.3 Elastic properties 

Elasticity is the fundamental property of a material. When an elastic material is deformed due to an 

external force, it experiences internal forces that oppose the deformation and restore it to its original state if the 

external force is no longer applied. To study the elastic properties of present compounds the calculations of 

second order elastic constants is needed. The knowledge of second order elastic constants (SOECs) and their 

pressure derivatives are important for the understanding of the interatomic force in solids. The expressions of 

second order elastic constants are given in our earlier works [15-20].   

The expressions of second order elastic constants are as follows:   
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Using model parameter (b, ρ, f(r)), pressure derivatives of bulk modulus have been computed whose 

expressions are as follows: 
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The values of Ai, Bi, and Ci (i =1, 2) have been evaluated from the knowledge of b, ρ and vdW coefficients.  

We have calculated the values of the second order elastic constants (SOEC’s) of the materials under 

study. Also, we could reproduce the correct sign of the elastic constants (C11-C12). The study of SOEC’s under 

pressure is important as C11 represents elasticity in length and C12 and C44 are shape related elastic constants.  

The second order elastic constants (SOEC’s) and pressure derivatives of plutonium pnictides have also been 

calculated by using eq. (7-10). The computed values of SOEC’s are given in Table-3. We have compared our 

results with available experimental [12] and theoretical results [11]. It is clear from this table that our values 

show a better agreement with experimental results compared with theoretical results. 

In the overall attainment, it may be concluded that there is reasonably good agreement of the present 

extended interaction potential (EIP) model with the results of other theoretical data.  The charge transfer effect 

seems to be of great importance at high pressure when the inter-ionic separation reduces considerably and the 

coordination number increases.  

Finally, it may be concluded that the present model is adequately suitable for describing the phase 

transition phenomena and elastic properties of PuAs and PuSb under high temperature and pressure. The 
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inclusion of three body interactions and zero point energy effect has improved the prediction of phase transition 

pressures.  
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Table-1 Input data and calculated model parameters for PuAs and PuSb.  
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Table-2 Phase transition and volume change of plutonium pnictides. 
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Table-3 Calculated values of second order elastic constants (SOEC’s) (in GPa), bulk modulus (in GPa), 
and pressure derivative of bulk modulus of plutonium pnictides. 

Solid C11 C12 C44 B dB/dP 

PuAs 

Others 

Expt. 

150 

152
a 

- 

27 

25
a 

- 

31 

25
a 

- 

68 

67
a 

69
b 

2.01 

- 

- 

PuSb 

Others 

Expt. 

155 

158
a 

- 

25 

21
a 

- 

29 

21
a 

- 

68.33 

67
a 

68
b 

1.91 

- 

- 

 a-ref [11], b- ref [12] 
 

 

 

 

 

Solid Input Parameters Model Parameters 
r0 (Å) B (GPa) b(10-12 ergs) ρ(Å) f (r) 

PuAs 2.92
a 

69
b 

12.0748 0.198 0.1023 

PuSb 3.12
a 

68
b 

10.9256 0.212 0.1147 

Solid Phase Transition Pressure  (GPa) Volume Collapse % 

Present Expt. Others Present Expt. Others 
PuAs 35.5 35-38

a 
35.0

b 
8.7 9.0

a 
8.6

b 

PuSb 21.0 20
a
,40

a 
20.8

b 
7.2 4.0

a
, 9.0

a 
6.9

b 
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Figure 1. The variation of Gibbs free energy change with pressure. 

 

 

Figure 2. The variation of volume change with pressure for PuAs. 
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                    Figure 3. The variation of volume change with pressure for PuSb. 
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