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Abstract 

In this theoretical work, the subject of stopping power is investigated for slow hydrogen dicluster by using random 

phase approximation. The projectile is stopped by variance solids of different Wigner Seitz radiuses. The 

considered stopping power is related to the interaction between a low velocity dicluster  of zero damping interacts 

with (Au, C, Al, and Cs) targets mediums based on an electron gas model.The subject of an ionic dicluster stopping 

power has been calculated by using Random Phase Approximation (RPA) at low velocity for the first and second 

approximation order, where the influence of damping has been ignored. The obtained results of this study show 

detailed behavior of the ionic dicluster of its duality interaction with several electron density targets mediums of 

long range collision belongs to aggregation effect, their affected parameters as internuclear distance of dicluster, 

and its velocity are studied.The results have been achieved by using programs of Fortran-90 language which 

performed for the numerical calculation. 
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1. Introduction 

Beams of molecule and cluster ions covering a wide range of energies have become available recently. Such beams 

are useful tools in fundamental research on the interaction of particles with matter, expanding the number of 

available degrees of freedom and thus the range of observable phenomena. Moreover, there are promising 

applications in science and technology. Cluster beams with energies per atom in the KeV or MeV range allow 

deposition of energy in matter at densities for above that can be achieved with beams of atomic ions [1,2]. This 

has implications on ion-beam-induced adsorption [3, 4], track formation [5], and inertial confinement fusion [6]. 

Conversely, clusters with energies per atom in the eV regime are of potential use for depositing material because 

of the highly achievable particle currents that combined with low damage rates [7, 8]. 

The present study concerns with the deposition of electronic energy by slow molecular clusters in matter (less 

than Fermi velocity (νF). 

A central quality characterizing the interaction of cluster projectiles with matter is the mean energy loss per 

traveled the path length, or stopping power. This quality is approximated by the sum of the stopping powers for 

the constituent atomic ions of cluster [9], 
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2. Declutter Interaction 

Consider a pair of ions Z1, Z2 in correlated motion a structure that may be obtained by the incidence of diatomic 

molecules with velocity (v) in a dense medium of valence electrons of solid.  

The main electron gas parameters to be used here are the following: Fermi velocity (νF) , plasma frequency 

(ωP), and Wigner-Seitz radius of the average volume occupied by each electron in units of Bohr radius 

o

o
h Amea 529.0/

22  . Values are typically ..2 uars   but they range from ..5.1 uars   to 

..8.2 uars  (with relations: 
Fv
v

= 1.919/ sr , 
3/3 sp r  in atomic units). It has been shown, both 

theoretically and experimentally, that the energy lost per particle and per traveled the path length for a cluster of 

ions moving in a solid target shows important differences usually called vicinage effects- with respect to the energy 

loss of the separated ions [10]. The origin of this effect is the interference in the electronic excitations of the target 

due to the correlated motion of the penetrating ions. In this study low dicluster velocity is considered to investigate 

the vicinage effect on cluster energy loss, where the main contribution to the vicinage effect is Plasmon excitation 

[11], in this case the wave number (k) of the projectile is less than the critical wave number (KC). A domain of 

distant or collective interactions. With typical distances where r is the internuclear distance of dicluster, the 

resonant or plasmon excitation is the relevant process. The induced polarization induced by the charged projectiles 

produces an electric field, which reacts by generating a stopping force on the projectile. There are two different 

contributions to this force: one coming from the interaction of each proton with its own induced polarization and 
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the other due to the interaction of each proton with the electrons exerted on the two moving projectiles [12]. 

 

3. Dielectric Formalism for the Energy Loss 

Consider a cluster of N charges Zie, moving with non-relativistic velocity (v)  in a material medium of longitudinal 

dielectric constant (k ,�). Neglecting small deviations of the individual velocities with respect to the average 

velocity v , the corresponding charge density can be written as 

 
i

tii vrreZtr )(),(
vvvv    …………………………………..(2) 

Where ir
v

 is the positions of the corresponding charges at time t=zero. 

For nonrelativistic velocities, the electric field ),( trE
vv

 generated by the cluster is determined from 

Poisson's equation, which yields the simple algebraic relation between the space-time Fourier transforms of 

 trE ,
vv

 and  tr ,
v  

),(/),()/4(),( 2  kkkkikE
vvvvv

  ……………………….(3)  

 

Thus, the following expression for the electric field is obtained by: 

 
).,(

).(exp2

)2(

1
),(

2

3

2
vkk

tvrrki

k

ki
kdetrE i

i

iZ vvv

vvvvv
vvv




  

  ………………………….(4) 

In these expressions, the fields due to the external changes and the fields due to the polarization induced in the 

medium are summed. In particular, the force acting on the jth particle is given by: 
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Where Im and Re are the imaginary and real part of 

).(

1

k
v


 and ijji rrr

vvv
    

In Eq. (4), the force has been written explicitly in real form by using the physical requirement that the fields must 

be of real magnitudes, which imposes the following condition on the dielectric constant: 

).,(),(  kk
vv   

It is interesting to compare the behavior of the two terms in the integral with respect to a change in the sign of 
ji

r
v

, 

or what is equivalent, to compare the force that the i charge exerts on the j charge, with the force that the latter 

exerts on the first. The mutual forces acting through the term in 








 )(

1
Re

k
v  are opposed, and cancel out if the 

acting forces overall cluster of charges are summed. The forces acting through the term in  ),(/1Im k
v

  

are, on the contrary, dissipative (considering the energy of the cluster not of the individual particles). 

 Thus, the energy loss (per unit time) of the cluster of charges is given by 


j

jFv
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Then 
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The terms have separated with i=j, which give the energy loss of totally independent charges, and the terms 

with ji  , which represent interference effects on the energy loss due to the simultaneous perturbation of the 

medium by the charges in correlated motion. 

Eq. (6) is a general formula for the stopping power of the diclusters of charges (z1e) and (z2e) then  
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Where the two charges in correlated motion with velocity v
v

 and internuclear separation )( 211212 rrrr
vvvv

 . 

In Eq. (7) the stopping power is given as a function of the relative orientations of r12 and v . Consider the 

orientations r12 are randomly distributed and the mean energy loss −〈��/��〉  corresponding to random 

orientations of r12 may be obtained by using the property of δ – function.  

Eq. (7) becomes, 
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),(&),(  kfkf
cs

vv
   are the functions for single charge interaction and correlated term. And Im � �


∈(��⃑ ,��⃑ .��⃑ )�  
is solved in section 3. 

 

4. Low Dicluster Velocity (LV.) ���⃑ < ������⃑ with no damping � → 0 

4.1 Imaginary Part of the Dielectric Function: 

The well-known Lindhard function [13] gives in a self-consistent way an exact description of the dielectric 

function for a non-relativistic free electron gas of high density at zero temperature. In the low frequency limit, 

within this Random Phase Approximation (RPA) for the dielectric function, the loss function can be written as: 
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Multiplying and dividing Eq. (10) by its conjugate, yields: 

),()(

),()(

),()(

1

),(

1

21

21

21 


 kik

kik

kikk
vv

vv

vvv









    …….……(11) 

therefore the imaginary part of 
�


∈(��⃑ ,�)  can be written as: 
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From Echenique et al. [14] we have that: 
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Substituting Eq.(13)-(16) into Eq. (12), yields: 
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4.1.1 Derivations of Approximate Formula for the Dicluster Stopping Power 

Substitute Eq. (17) into Eq. (8) one can get 
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Eq. (18) and (19) are the exact value equations for calculating average stopping power of single ions and correlated 

ions〈− � !
�" 〉 & 〈− � $

�" 〉 respectively (with no damping). These equations can be solved numerically. Therefore, we 

seek forms of ∈ (&�⃑ , �) and '
(&�⃑ ) that permit analysis without exclusive resource to numerical methods. First for 

∈ (&�⃑ , �) an approximation is made to Eq. (12), if∈
 (&�⃑ ) ≫∈) (&�⃑ , �)  ; therefore , 
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Different approximations to the function '
(&�⃑ )ead to different expressions for the stopping power, for the charges 

z1 and z2.  

In the present work, we shall try to study the effect of the approximation of '
(&�⃑ ) to the stopping power of dicluster: 

 

(i) The First approximation method to *+(,��⃑ ): 
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Substitute Eq. (15) in Eq. (21) one can get, 
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By substituting Eq. (22) into Eqs. (9a, 9b) respectively, then: 
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Then the average rate of stopping power due to single charges at low velocity with no damping (γ→0) is given by 

the following Eq. 
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If we return to the substitution of Eq. (22) into Eq. (9b) one can get 
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The average stopping power due to correlation of charges becomes, 
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(ii) The Second Approximation form to  *+-,��⃑ . : 

A good approximation to the stopping power values obtained numerically by using the full (RPA) dielectric 

response function has been proposed by Lindhard and Winther [15]. Expanding the function '
-&�⃑ . and then, '
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up to the second order in k and then, '
-&�⃑ .  becomes [16]. 
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The imaginary part of the (RPA) dielectric loss function is given by inserting Eqs. (13-15) and Eq. (31) into Eq. 

(12) as follows:  
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By substituting Eq. (33) into the stopping power of a single charges projectile expression, Eq. (9a), One can get: 
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By using the standard integral solution [91], one can get the final solution to Eq. (34) as follows: 
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The average rate of the stopping power for the second approximation due to single charges with low velocity is 

given by the following Eq. 
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One can get  
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To calculate the average energy loss per unit path length of the two correlated ions we substitute Eq. (33) into Eq. 

(9b) as follows: 
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The average correlated stopping power can be written as follows: 
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Eqs. (36) and (41) has been solved numerically. 

 

4.2   Calculation of  Dicluster Stopping Power with Damping Process (γ → 0) For Slow Ions  1⃑ < 1⃑2 : 

For an electron gas described by a complex dielectric function, ∈ (&�⃑ , �), the stopping power for a carbon of 

velocity 1⃑ in the electron gas (or the stopping power of the electron gas) is given by the Eq. (6), and a dielectric 

function approximation for the of slow ions has been suggested by Ferrel et al. [18]. They employ an approximation 

form for, ∈ (&�⃑ , �), the dielectric function of the metal, which is appropriate when energy transfer, ω, is small 

compared with the Fermi energy of the metal. 

Eq. (18) is a simple generalization of the longitudinal dielectric function of an electron gas as derived from 

the hydrodynamic model [13]. It is chosen so that the next Eqs. (53,55) of single and correlated stopping power 

respectively agree with Lindhard dielectric function, to first order. The presence of the factor  3(2&�⃑ 2 − &�⃑ )               

accounts, hence particle-hole excitations of small energy cannot correspond to a momentum transfer much greater 

than 2&�⃑ 2  . The term containing γ as a factor describes damping of collective states and may be taken from 

experiments for a given metal. 

By substituting the imaginary part, into Eqs. (9a,9b) then the average stopping power for single ions can be 

represented by the following equations: 
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Also the average Stopping Power for the correlated ions is given as follows: 
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Eqs. (43) and (45) have been solved numerically. 

 

5. Results and Discussion 

The energy loss of a pair of charges in correlated motions through a degenerate electron gas is calculated in the 

present work, within the linear response approximation of Random Phase Approximation (RPA) to describe 

collective excitations, where the total stopping power incorporates both excitation effect - (dE / dx) while the 

correlated energy loss represents the correlation effect alone. For sufficiently low velocities the energy loss of 

correlated charges depends on the relation between the internuclear distance 5⃑
) and the wavelength of the 

electrons at the Fermi surface 62 or Wigner Seitz radius 57 where &�⃑ 28 

9!

 and &�⃑ 28 

:;

 [19,20]. For 5⃑
) ≫ 62 (or 5⃑7) 

the interference effects on the correlated energy loss become negligible, as it is physically plausible. These results 

are demonstrated in Figs. (1-4) although the accuracy difference of the results of Figs. (1,2) and (3,4), this physical 

explanation agree with Arista's results in (1977) [19] and his conclusions. 

 
Fig.(1): Total stopping power versus internuclear distance of Au ,C, Al and Cs targets for first approximation at 

low velocities (a)V=0.1 (b) V=0.5 (c) V=0.7 (d) V=1.2, with no damping targets. 
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(c )                                                            (d) 

 

Fig.(2):Correlated stopping power versus internuclear distance of Au, C, Al and Cs targets for first approximation 

at low velocities (a) V=0.1 (b) V=0.5 (c) V=0.7 (d) V=1.2,with no damping target. 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.82, 2020 

 

39 
 

 
 

Fig.(3): Total stopping power versus internuclear distance of Au, C, Al and Cs targets for second approximation 

at low velocities (a) V=0.1 (b) V=0.5 (c) V=0.7 (d) V=1.2, with no damping targets. 
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Fig.(4):Correlated stopping power versus internuclear distance of Au, C, Al and Cs targets for second 

approximation at low velocities (a) V=0.1 (b) V=0.5 (c) V=0.7 (d) V=1.2, with no damping targets. 

Here two important features are noted: (i) the interference effect becomes negative and this may happen when 

 )��⃑
�<

< 5⃑
) < =��⃑
�<

    [20] where the electrons excitations of the medium atoms being incoherent to cause increasing 

projectile energy rather than dissipating it, and vice versa in the case of 1⃑
) = 1⃑/�> which names resonant or 

Plasmon excitations the highest transfer of projectile energy to the target electrons should happen and this belongs 

to the coherency of electrons excitations, (ii) The value in the united atom case (5⃑
) = 0) takes maximum energy 

loss values where the projectile behaves as a unit charge of (?
 @ ?))which may increase Coulomb screening or 

in other ward the stopping power, conversely in the case of  5⃑
) A =��⃑
�<

 the dicluster should be two separated particles 

of charge  ?
B CD� ?)B and , where the correlated stopping power would approach to zero[20]. 
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6. Conclusion 

The stopping power for a dicluster projectile of different internuclear distances moves at low and high velocity to 

interact with a piece of material of different electron densities: 

)88.5(  and    ),12.2(    ),66.1(     ),49.1(  ssss rCsrAlrCrAu   

Stopping power relationship consists of two components the first one originates from the single or close 

collision between interactions happens at high velocity range where high momentum transfer is achieved from ion 

to electron. The second contributed component is caused by the collective excitation for the waves of plasma; the 

adequate circumstance for these latter phenomena is the low dicluster velocity or low momentum transfer to the 

target medium electrons. This obtained behavior gives good results compared with the theoretical results of Arista 

and Ponce [14] for ionic dicluster interacts with channeling target foil. 

A good relationships have been obtained from calculating the total stopping power by using Lindhard function 

of Random phase Approximation with no damping for first and second order of approximation at low velocities 

as used by Nagy and Echenique [65] and Plasmon Pole Approximation at high velocities. This study is comparable 

to the result of Arista [15]. 

The rise of dicluster internuclear distance decreases the correlated values of stopping power but this relation 

is related to the other parameters as that of electrons density, where their comparable condition ensure the 

maximum efficient of dicluster projectile-target interaction, as well as the effect of the dicluster velocity. 

When dicluster internuclear distance approaches to zero to be unit atom then the vicinage effect being at the 

maxima value for the best performance of the two ions exchange the polarization of each one of them. This 

behavior  reflected on the high loss energy per the unit length exerted by the dicluster . 
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