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Abstract 
Density functional theory (DFT) calculations of electronic energy bands of CexHf1-xO2 (x=0.5 and 0.75) are 
investigated within the generalized gradient approximation (GGA) and taking into account relativistic 
contributions. Nonlinear core corrections terms are used. Our plotted band structures show that the valence bands 
are separated from the conduction bands by an indirect band gap of 4.14eV, from X to Γ and direct band gap of 
4.18eV at X for Ce0.75Hf0.25O2. For Ce0.5Hf0.5O2, the indirect band gap is 3.56eV from X to Γ and direct band gap 
of 3.84eV at Γ. Hence, the fundamental band gap in these alloys are indirect. We found a direct band gap of 
5.90eV for CeO2 at the Γ point, in good agreement with experiment. We also calculated lattice parameters of 
5.28Ǻ and 5.37Ǻ for Ce0.5Hf0.5O2 and Ce0.75Hf0.25O2 respectively. Hf doping in ceria (CeO2) results in reduced 
band gap compared to pure ceria. From the density of states (DOS) plot, the band gap is formed predominantly 
from O2p and (Ce, Hf)5d states from valence and conduction bands respectively. The calculated wide band gap 
of the oxides show that they are active in ultraviolet (UV) radiation and so can be applied as UV blockers. 
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INTRODUCTION 
Due to reducing property and high oxygen storage capacity (OSC) of ceria, it is commonly used as a catalyst for 
many chemical processes. Unfortunately, the applications of pure ceria are deficient at high temperature. And so 
to make ceria well applicable at broad range of temperatures, dopants must be added to it. This enhances its 
characteristic properties. Researchers have shown that doping of hafnia (Hf) into the ceria lattice highly 
enhances the oxygen storage capacity (OSC), thermal stability and reducibility of the produced mixed oxide [1-
5]. CexHf1-xO2 mixed oxides are used as catalysts in CO oxidation [6], as three way catalyst (TWC) [7] and for 
soot oxidation [8].  

Ceria-hafnia mixed oxides are also useful because of their oxygen storage/release properties [9-11] that find 
applications in oxygen storage capacitors, nuclear reactors and thermal barrier coatings. It has already been 
shown that CexHf1-xO2 for x=0.5 and 0.75 crystallizes in the cubic fluorite structure [12-16]. 

As the size of SiO2 gate dielectric films used in complementary oxide semiconductor (CMOS) devices is 
reduced, the current leakage in the gate becomes high [17-19]. Hence, the need to replace the SiO2 gate 
dielectrics with a high dielectric material which permits high gate capacitance without leakage current. Many 
researches have been carried out in order to find a substitute for future use [20-22]. Many high dielectric 
materials were discovered which can replace SiO2. Among them is CexHf1-xO2 [23].  

The introduction of Hf gives rise to modifications of electronic structure of CeO2. Unfortunately, theoretical 
informations about the electronic properties of CexHf1-xO2 is very scarce. The aim of this present work is to study 
the electronic structures of the mixed oxides using density functional theory (DFT) calculations.  
The knowledge of the electronic structures of these mixed oxides would aid in the design of gate oxide in   
microelectronics and energy related applications such as solid oxide fuels, gas-sensors and optics.  
 
COMPUTATIONAL METHOD 
The electronic properties of the mixed oxides are investigated using electronic structure calculation based on the 
generalized gradient approximation (GGA) within the density functional theory (DFT) [24,25]. The exchange 
correlation energy of the electrons is described in the GGA. The GGA functional from Perdew, Burke and 
Ernzerhof [26] is used to model the exchange and correlation energy of the electrons. Ultrasoft pseudopotential 
in the plane wave basis sets as implemented within the quantum espresso package is used [27]. A plane wave 
cutoff kinetic energy of 100Ry was chosen. Calculations were performed on 12 atoms supercell of the fluorite 
structures. A 6x6x6 k-point grid was used to obtain a well converged sampling of the Brillouin zone. The k 
integration over the Brillouin zone is performed using the Monkhorst and Pack mesh [28]. Scalar relativistic 
calculation [29-31] is done and non-linear core correction terms are also included [32]. 

The electronic configurations for Ce, Hf and O are Ce: Xe 4f1 5d1 6s2, Hf: Xe 4f14 5d2 6s2 and O: He 2s2 2p4. 
For the constituent elements, the valence electron configurations used are: Ce- 5s2, 6s2, 5p6, 6p6 and 5d1, Hf- 5s2, 
6s2, 5p6 and 5d2, O- 2s2 and 2p4. The f-electron is treated as a localized core state. The 3d excited state of 
Oxygen is included. 

The iteration process was repeated until the calculated total energy of the crystals converged to less than 
1mRyd.  Convergency was achieved in nine iterations for the alloys and in seven iterations for CeO2.  
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RESULTS AND DISCUSSION 
We have used first principles calculation to investigate the electronic structures of ceria-hafnia for x=0.5 and x= 
0.75. Both alloys crystallize in the cubic fluorite structure as shown in Figure 1 and 2. For comparison purpose, 
we calculated the band gap of CeO2, although many DFT calculations of the electronic and structural properties 
of CeO2  have been performed [33-43]. Ceria is a lanthanide oxide with the cubic fluorite structure. Ceria is a 
wide band gap material with valence and conduction band built primarily from O2p states and Ce5d states 
respectively. Between these two bands lies a narrow Ce4f band. Experimentally, the O2p-Ce5d band gap is about 
6eV [44]. 

In this work, the lattice parameters of CeO2, Ce0.5Hf0.5O2 and Ce0.75Hf0.25O2 are calculated to be 5.41Ǻ, 
5.28Ǻ and 5.37Ǻ respectively. The band energies at high symmetry points for Ce0.5Hf0.5O2 and Ce0.75Hf0.25O2 
from DFT-PBE calculations are given in Table 1 and 2. The valence band energy at each point is represented by 
Ev while the conduction band energy is represented by Ec. The valence band maximum and conduction band 
minimum are represented with bold fonts. For easy comparison, the band gaps (Eg) of CeO2, Ce0.5Hf0.5O2 and 
Ce0.75Hf0.25O2 are listed in Table 3. The band gap presented is between O2p and (Ce,Hf)5d states. 

The electronic band structures of Ce0.5Hf0.5O2 and Ce0.75Hf0.25O2 are given in Figure 3 and 4 respectively. 
For Ce0.5Hf0.5O2, the direct band gap is 3.84eV at Γ while the indirect band gap X → Γ is 3.56eV. Therefore, the 
fundamental band gap of the alloy is indirect (3.56eV).  For Ce0.75Hf0.25O2, the direct band gap is 4.18eV at X 
while the indirect band gap which is also the fundamental band gap is 4.14eV from X → Γ is 3.56eV. From the 
band structure plot, both mixed oxides are wide band gap insulators. They show good UV light absorption 
region. They could be used as photocatalysts. Light having energy within the band gap energies of these oxides 
can be absorbed by them.    

As we have taken 4f-orbitals in core part of Ce and Hf basis set so f orbital bands are absent in the shown 
energy band. From DOS plots in Figure 5 and 6, energy bands of CexHf1-xO2 (x=0.5 and 0.75) are divided into 
five parts. The first energy band in the valence band are mainly due to 2s states of O atom. The next two regions 
contain the contribution of Ce-p and Hf-p orbitals respectively. The region just below the Fermi level EF is 
predominately p states of O, with only a small contribution from d-Ce and d-Hf states. Above the Fermi level, 
the region is predominately d states of the metals with a very small contribution of their s-states. That means 
valence bands are formed mostly by oxygen p states, while conduction bands are formed majorly by Cerium and 
Hafnium 5d states. Therefore, we conclude that the 5d electrons of Ce, 5d electrons of Hf atoms and 2p electrons 
of O atom play a major role in deciding the size of band gap. 
               

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Ball and Stick representation of                                       Figure 2: Ball and Stick representation of                                                                                    
Ce0.5Hf0.5O2                                                                                                Ce0.75Hf0.25O2 
 
Table 1: Band energies at high symmetry points in Ce0.75Hf0.25O2. The valence band maximum is set to 
zero. 
Kpoints Ev(eV)  Ec(eV)  
L -0.57 4.35 
Γ -0.20 4.14 
X 0.00 4.18 
W -0.32 4.32 
K -0.32 4.34 
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Table 2: Band energies at high symmetry points in Ce0.5Hf0.5O2. The valence band maximum is set to zero 
kpoints Ev(eV)  Ec(eV)  
L -0.61 4.20 
Γ -0.28 3.56 
X 0.00 4.22 
W -0.36 4.32 
K -0.36 4.26 
 
Table 3: Electronic band gap of CeO2, Ce0.75Hf0.25O2 and Ce0.5Hf0.5O2 
System Direct Eg(eV) Indirect Eg(eV) Experimental Eg(eV) 
CeO2 5.90 5.68 6 (direct) 
Ce0.75Hf0.25O2 4.18 4.14     ― 
Ce0.5Hf0.5O2 3.84 3.56     ― 
 

    
         L                        Γ                   X        W  K                          Γ 
Figure 3: Electronic Band structure of Ce0.5Hf0.5O2. The vertical axis represents the energy in eV while the 
horizontal axis represents the high symmetry points.  
 

    
         L                        Γ                   X        W  K                         Γ 
Figure 4: Electronic Band structure of Ce0.75Hf0.25O2. The vertical axis represents the energy in eV while 
the horizontal axis represents the high symmetry points.  
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Figure 5: Density of states of Ce0.5Hf0.5O2 
 

 
Figure 6: Density of states of Ce0.75Hf0.25O2 
 
CONCLUSION 
In summary, using density functional theory, we have studied the electronic properties of Ce0.5Hf0.5O2 and 
Ce0.75Hf0.25O2 within GGA for exchange correlation potential. In addition to the electronic band structure, we 
obtained the density of states. 

Our calculations led to ground state electronic properties. We found that the fundamental band gaps of 
CexHf1-xO2 are indirect band gaps, from X to Γ, of 3.56eV and 4.14eV respectively. The calculated direct band 
gap of CeO2 of 5.90eV, at the Γ points, is in agreement with the result of experiments. The calculated band gap 
energy shows that the alloys can absorb in the short wavelength UV light and hence can find application in the 
UV metal-insulator-semiconductor light emitting diodes and UV light blockers. 

We expect the calculated band gap of the mixed oxides to enable future comparisons with experimental 
measurements, such as optical reflectivity.  

The electronic properties of the alloys can be studied using other methods for comparison purpose. The 
obtained results can be used as a reference data in studies of ceria-hafnia alloys with different x concentrations. 
We consider that the results obtained are only one predictive study, by expecting that our present research will 
induce more works on the mixed oxides. 
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