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Abstract 
The various methods as used in generating values for the Morse potential parameters involved 

heavy computational simulations and complex fitting to bulk properties of crystals. These identified 

problems had prompted us to evolve an analytical method for determining the Morse potential 

parameters for face centered cubic. In this method, the equilibrium values of the bulk parameters of 

some selected face centered cubic are fitted to the embedded atom method parameters. The 

experimental physical inputs are made up of the bulk modulus, lattice constants, elastic constants 

and the vacancy formation energy. Numerical calculations carried out to determine the fitness of the 

total energy from the Morse potential showed the fundamental properties of this potential. The 

values of the Morse potential parameters obtained from the derived analytic expressions were used 

to calculate the compressibility and the sneisenuGr '&& constant for face centered cubic, (fcc), crystals 

at room temperature. The results generated for these parameters agreed well with the experimental 

values found in literature. 
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                                                  Introduction 

      The Morse potential has it foundational principle on the anharmonic effects of the atoms within 

the lattice constant. The functional form of this potential is suppose to predict the energy values 

between two neighbouring atoms accurately well, when values of the associated parameters are 

accurately predicted. Available values of these parameters were often obtained from anharmonic 

effects contained in X-ray Absorption Fine Structure (XAFS) which influences the physical 

information taken from the spectra,[1, 2, 3]. Also Morse potential parameters have been determined 

by fitting the first and the second derivatives of the total energy of a metal into the compressibility, 

dislocation energy and elastic constants of the crystal at absolute pressure and temperature, [4, 5]. 

      The heavy computational simulations demanded by these methods and the complex fitting to 

bulk properties of selected crystals, prompted us to by bypass these common methods and evolve a 

much simpler analytical method. In this method the total energy of crystal at ground state is 

obtained through discrete summation of the pair potential function, in this case, the Morse potential, 

over all the atoms in the crystal and, fitted to the ground state energy functions within the embedded 

atom method.  This study is also designed to determine two crystal properties whose expressions 

depend effectively on Morse potential parameters. These EAM parameters are the lattice constants, 

elastic constants, bulk modulus, the vacancy formation energy, first and second derivatives of the 

potential energy functions, needed to specify the total energy of a crystal, [6].  

     The EAM is a technique widely used for constructing many-body potential models for metals. 

The required functions needed to completely specify the background theory of the EAM are 

analytically determined. This constitutes major reason in this study for fitting the desired Morse 

parameters to the EAM parameters.  
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                       Solution of  Morse Potential for Face Centered Cube (fcc) 
 The pair potential energy )( ijrφ of two atoms j and i  separated by a distance ijr  is given in terms of 

the Morse potential function as 

                            { }))())(2exp( exp(2)(
e
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where D and α  which are constants, respectively have the dimensions of reciprocal distance and 

energy. These are the two parameters whose values are to be determined analytically. The value of 

parameter er  is fixed to be equal to the equilibrium distance between two atoms j and i  within the 

first nearest neighbour concept, given as 2/oe ar = , oa  is the equilibrium lattice constant of the 

crystal. 

The total energy )(rE  of a crystal whose atoms are at room temperature can be obtained by 

summing equation (1) over the entire atoms of the crystal. This is done by choosing one atom in the 

lattice as an origin, and calculating its interaction with other atoms in the crystal. The result 

obtained from such summation should be multiplied by N/2, where N is the atomic number of the 

metal, [7]. The functional form of the total energy )(rE  of a crystal in terms of the Morse potential, 

from this procedure is given as 
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In equation (2), atom i  is taken as the origin or the reference atom over which the summation is 

performed.  

Within the first nearest neighbor atoms concept, the summation in equation (2) reduces to          
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Evaluating equation (3) at err = , gives the equilibrium energy of the crystal, thus  
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where oU  is the equilibrium internal energy of crystal. 

 The total energy equation for any crystal within the EAM theory is given as the sum of the 

embedded energy required to embed an atom into the lattice and the summation of the pair potential 

energies between all the existing atoms in the crystal. This total energy representation is given as;    
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Within this framework, the EAM total energy equation can now be captioned as 
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The pair potential function is thus given as    
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The first and the second derivatives of equation (8) evaluated at err =  and at eρρ = , are 

respectively 
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The values for ///  and φφ are fully determined if the values of the first and the second derivatives of 

the embedded energy function )(ρF are known, and those of the electron density function )(rρ  are 

specified. The embedded energy function, [8] used, is given as 
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The first and the second derivatives of the embedded energy function are readily obtained from 

equation (11), while the first and the second derivatives of the electron density are obtained directly 

from the original EAM equations, [6]. The following are the expressions for these parameters, 

derivable from the EAM equations;  
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where ),( erφ )(/ erφ , and )(// erφ are respectively the expressions for the first and the second 

derivatives of the pair potential function evaluated at equilibrium inter atomic distance er . )( eF ρ , 

)(/ eF ρ  and )(// eF ρ are respectively the first and the second derivatives of the embedded energy 

function evaluated at equilibrium electron density eρ . 1211 ,CC  and 44C  are elastic constants of fcc 

metals, 11V  is the embedded atom method parameter and eΩ  is the equilibrium volume per atom. 

The expression for Morse potential constant α  is now determined by comparing equations (9) and 
(17), the result of this comparison gives 
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                              Application of Morse Potential 

In this section, we apply the Morse potential parameters as obtained from equations (5) and (17) to 

calculate the compressibility and the sneisenuGr '&& constant. Several expressions have been proposed 

in literature to calculate these parameters, [8,9,10]. In this study, the expressions for the 

compressibility β  and the sneisenuGr '&& constant γ  as given in [8] are used. These are respectively 
given in equations (18) and (19).  

          

err

e
dr

rEd
r

v

=

=
2

2
2 )(9

β
………. (18)       

1

2

2

3

3 )()(

6

−

==

−=
ee rrrr

e

dr

rEd

dr

rEdr
γ ………. (19) 

These expressions depend solely on the three Morse potential parameters,    .  and   , αerD  

 

                                              Experimental Physical Inputs 
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The experimental physical inputs, which consist; the lattice constants, a  in the unit of ( A& ), the bulk 

modulus, B  in the unit of ( 312 /10 cmerg ), and the cohesive energy, cE  in unit of  

( eV ) are respectively taken from Kittel, [11] and Rose, et al., [12]. Other experimental physical 

inputs are the elastic constants, 441211   and    , CCC   in unit of ( 312 /10 cmerg ) and the vacancy 

formation energies, F

ivE  in unit of ( eV ). The values to these parameters are taken from Smith et al., 

[13]. The values for these inputs are put together in table one. 

 

                                            Calculated EAM Parameters 

These are the values for the first and second derivatives of the pair potential functions, the values of 

the first and second derivatives of the electron density obtained from the EAM equations, (12-16). 

The values are put together in table two. Table three contains calculated values of the embedded 

energy function parameters. These tables are shown in appendix one. 

 

                                                           Results 

The results generated from this study are presented in tables 4, 5 and 6. Table 4 contains the values 

of the two parameters, ( D. and α ) in the Morse potential. Tables 4 and 5 respectively contain the 

calculated values of the neisenuGr &&  constant and the compressibility constant for the selected fcc 

metals. All these are put together in appendix two. The functional fit of the total energy equation 

from the Morse potential are shown in figures 1 and 2 for the seven selected fcc metals. These 

figures are shown in appendix three. 

 

                                             Discussion of Results 

Morse potential as shown in equation one is adopted here to describe the relationship between the 

potential energy and the atomic distance of a diatomic system. The theoretical background for this 

study lies fully in fitting the ground state of the total energy of the crystal coined from Morse 

potential to the ground state of the total equations of the EAM as shown in equation (6). 

     The values of the Morse potential parameters computed from this theoretical frame work for the 

seven selected fcc metals compared favourably with values from other theoretical studies,[15 ,16]., 

respectively marked (*) and (**) in table 4. The values of α from this study differ slightly by 1% 
from those from reference [15] and differ by 0.05% from those of reference [16]. The values of D  

differ respectively from those of reference [15] and reference [15] by 1% and 0.1%. 

     The functional fits for the total energy obtained from the Morse potential, and shown in figures 1 

and 2, show the fundamental properties of this potential. The cohesive energy for each of the 

selected fcc metal are adequately predicted 

    The values of the neisenuGr &&  constants are put together in table 5. Column two contains the 

values of this constant from this study as calculated from equation (20), while the experimental 

data, [17], are contained in column three. Values of this constant from available theoretical studies, 

[18 and 19] are respectively shown in columns four and five. The predicted values of 

neisenuGr && constant from this study are in good agreement with experimental data and those from 

the theoretical studies. [19]. This table shows that these values have been successfully reproduced 

for Ni, Cu and Pd. The predicted values of the neisenuGr &&  constants are slightly lower than those 

from both the referenced theoretical and experimental values for Pt, Au and Ag but give a good 

agreement with the experimental value for Al.  taken from Marini [20].  

   Table 6 contains the values of the compressibility constants. The values in column two are those 

from this study and calculated from equation (19). The values are in good agreement with the 

experimental, [13].   

 

                                                                  Conclusion 
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The results reported in this study are satisfactory in view of the simple machinery of calculations 

required when one uses the analytic functions of the EAM. This approach relates the anharmonic 

effect which is the foundational concept of the Morse potential to simple pair potential function 

which exists naturally between paired atoms. The correct predicted experimental values of the 

cohesive energy for alkali metals within the framework of this study furnishes us with a path of 

obtaining the parameters of analytic pair potential functions from other models.  
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Appendix 1. 

   Tables of Experimental Physical Inputs 

Table 1: Experimental physical inputs for the seven selected fcc metals 

  

Elements 

Cohesive 

Energy  

cE  )(eV  

 

Lattice 

Constants  

)(Aa &  

Vacancy 

Formatio

n 

Energy

F

vE1 )(eV  

   Elastic Constants 

        )/10( 312 cmerg  

Bulk Modulus    

B  

)/10( 312 cmerg

 
11C  12C  44C  

Ni 4.44b 3.510b 1.60c 2.612c 1.508c 1.317c 1.876 

Cu 3.50b 3.615b 1.30c 1.762c 1.249c 0.818c 1.420 

Pd 3.94b 3.890b 1.40c 2.341c 1.761c 0.712c 1.955 

Pt 5.85b 3.920b 1.30c 3.580c 2.536c 0.774c 2.884 

Au 3.78b 4.070b 0.96c 2.016c 1.697c 0.454c 1.803 

Ag 2.96b 4.080b 1.19c 1.314c 0.973c 0.511c 1.087 

Al 3.34b 4.040b 0.66c 1.143c 0.619c 0.316c 0.794 

Table 2: Calculated values of the embedded atom method parameters 

Metals )( erφ  )(/ erφ  )(// erφ  )(/ erρ  )(// erρ  V11 

Ni 0.7061 0.8246 0.8795 0.8637 -1.9786 0.7145 

Cu 0.6223 1.2652 -0.9335 1.5325 -3.1551 1.3039 

Pd 0.0050 0.5209 2.0356 2.3338 1.7290 2.1398 

Pt 0.6263 1.7338 0.1271 2.1338 -2.3775 1.9715 

Au 0.1200 0.6404 1.6116 2.4368 2.0725 2.3377 

Ag 0.5462 1.4169 -1.3468 1.9295 -3.4596 1.8555 

Al 0.5279 0.7178 -0.5498 1.1584 -2.3858 1.1031 
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Table 3:  Calculated values of the embedded energy function parameters 

Metals 
Gα  Gλ  )( eF ρ  )(/ eF ρ  )(// eF ρ  

Ni 0.0666 0.7268 -8.6767 -5.7284 2.5244 

Cu 0.0414 0.7262 -7.2335 -4.9535 1.8608 

Pd 0.3065 0.6438 -3.9700 -1.3391 2.1042 

Pt 0.1935 0.7009 -9.6080 -4.8751 4.2606 

Au 0.3041 0.6545 -4.5002 -1.5769 2.3928 

Ag 0.0206 0.7270 -6.2373 -4.4060 1.4221 

Al 0.1488 0.7201 -6.5077 -3.7178 2.5622 

      

 Appendix  2. 

 

  Table 4: Calculated values of Morse potential parameter. 

Metals Ni Cu Pd Pt Au Ag Al 

α  1.4432 

1.4199
* 

       -
 

1.4342 

1.3123
*
 

1.3588
**
 

1.6464 

    - 

    - 

1.6474 

     - 

     - 

1.6511 

1.5830
*
 

     - 

1.4506 

1.1836
*
 

      - 

1.1613 

1.0341
*
 

1.1646
**
 

D  0.3171 

0.4205
*
 

      - 

0.2414 

0.3429
*
 

0.3364
**
 

0.1713 

     - 

     - 

0.1500 

     - 

     - 

0.0957 

    - 

    - 

0.1260 

0.3323
*
 

     - 

 

0.5138 

0.2703
*
 

    - 

 

Table 5: Values of neisenuGr && constants γ for the selected fcc metals.  

Elements Authors’ 

Values 

Experimental 

Values 

 Other Theoretical Values for γ  

Barrera and Batana Pandya et al 

Ni 1.7909 1.830 1.620 2.770 

Cu 1.8305 1.970 1.840 1.930 

Pd 2.2643 2.280 2.180 2.180 

Pt 2.2832 2.560 2.500 2.640 

Au 2.3759 3.060 2.770 1.190 

Ag 2.0924 2.360 2.220 3.280 

Al 1.6588  1.700
***
      -   - 
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  Table 6: Values of Compressibility for the selected fcc metals  

Elements Ni Cu Pd Pt Au Ag Al 

Present 

Values 

0.5473 0.7231 0.5252 0.3560 0.5695 0.9446 1.2932 

Experimental 

Values 

0.5380 0.7300 0.5530 0.3590 0.5770 0.9930 0.9930 

 

 

 

 

 

 

Appendix 3. 
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