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Abstract

We have solved approximately the relativistic Klein-Gordon equation under the special case of equal scalar and
vector shifted Hulthen plus angle dependent potential using the parametric form of NlIkiforov-Uvarov method.
The energy eigenvalues and the corresponding wave functions expressed in terms of a Jacobi polynomial are
obtained. The effect of the angle dependent part on the radial solution is also discussed. We have also discussed
few special cases of this potential.
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1.0 Introduction

The study of exactly solvable potentials has attracted much attention since the early development of quantum
mechanics[1-3] and solving the nonrelativistic and relativistic equations for some potentials of interest is still an
interesting work in the existing literature[4-13]. In nuclear and high energy physics, one of the interesting
problems is to obtain exact solution of the Klein-Gordon, Duffin-Kemmer-Petiau and Dirac equations. When a
particle is in a strong potential field, the relativistic effect must be considered, which gives the correction for
nonrelativistic quantum mechanics[14-15].

In nonrelativistic quantum mechanics, it is well known that the exact solutions of Schroédinger equation are
possible only for a few set of quantum systems. However, when arbitrary angular momentum quantum number

[ is present, one can only solve the Schrodinger equation approximately using suitable approximation schemes
[16]. Some of such approximations include conventional approximation scheme proposed by Greene and Aldrich
[17], improved approximation scheme by Jia et al.[18], elegant approximation scheme [19] etc. These
approximations are used to deal with the centrifugal term or potential barrier arising from the problem.

The subject of the noncentral potentials has generated a lot of interest [20-23] and the study of noncentral
potentials has been carried out in various fields of nuclear physics and quantum chemistry which could be used
to discuss the interactions between pair of nuclei and ring-shaped molecules such as benzene [24-26]. Bound
states solutions of Schrédinger, Klein-Gordon and Dirac equations for some noncentral potentials have received
so much attention and interest from researchers [27-32]. Recently, Hamzavi and Rajabi solved Dirac equation
for the Coulomb plus Novel angle dependent potential [33].

In solving nonrelativistic or relativistic wave equation whether for central or no central potential, various
methods are used. These methods include asymptotic iteration method (AIM) [34], super symmetric quantum

1
mechanics (SUSYQM) [35], shifted ﬁ expression [36], factorization method [37, 38], Nikiforov-Uvarov (NU)

[39] and others [40, 41].
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In the relativistic quantum mechanics, one can apply the Klein-Gordon equation to the treatment of a zero-spin
particle. In recent years, many studies have been carried out to explore the relativistic energy eigenvalues and
corresponding wave functions of the Klein-Gordon and Dirac equations [14, 15, 42].

The aim of this paper is to apply the parametric generalization of Nikiforov-Uvarov (NU) method to obtain the
approximate analytical solutions of the relativistic Klein-Gordon equation under equal scalar and vector shifted
Hulthen plus angle dependent (SHAD) potential defined as [ 43, 44]

1
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where (Vo - Z_bz > OJ , b is the range of the potential and V, is the potential depth , £ is the reduced mass

and 7 is the reduced plank’s constant , ¥, 5 and 3 are arbitrary constants.

The potential in Eq. (1) can be expressed as

2
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This potential could be used to describe nucleon-nucleon interactions, meson-meson interaction and also in
various branches of nuclear physics and quantum chemistry which may be used for interactions between the
deformed pair of nuclei and ring shaped molecules like benzene. The plot of the behavior of the radial potential

with range of the potential b is presented in Fig.1.
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Fig.1: Variation of potential with dept forb = (0.5,1. with V=5

Method

The Generalized Parametric Nikiforov-Uvarov (NU)

2.0
The NU method was presented by Nikiforov and Uvarov [39] and has been employed to solve second order
differential equations such as the Schrodinger wave equation (SWE), Klein-Gordon equation (KGE), Dirac

equation (DE) etc. The SWE

v (r)+[E-v(nlp(r)=0

can be solved by transforming it into a hypergeometric type equation through using the transformation,

s = 85(X) and its resulting equation is expressed as

where O (s ) and G (s) must be polynomials of at most second degree and 7 (s ) is a polynomial with at most

first degree and W/(s) is a function of the hypergeometric type.
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The parametric generalization of the NU method is given by the generalized hypergeometirc-type equation as
[45]

w9 e 1 e g s =o. 7

s(1—c,s) sz(l—c3s)2
Equation (7) is solved by comparing it with Eq. (6) and the following polynomials are obtained:
F(s)=(c, —c,8), 0(s) = s(1 = ¢;5),6(s) = =Es” + E,s = &, 8

According to the NU method, the energy eigenvalues equation and eigen functions, respectively, satisfy the
following sets of equation

c,n—(2n+1)cs +(2n+ 1)(\/5—% c3\/Z)+ n(n—1)c; +c, +2c,c4 +24Jcgcg =0, 9

gy
€01 €10

l//(s) = I\v]nlsc12 (l - C3S)_C12 e /03)Pn[ o ](l - 2C3S), 10
where

1 1
C4 :E(l_cl)’ Cs :E(Cz ~2¢) o =c+4, ¢ =20,6-&, ¢ =+ &,

- 2 - —
Cy =C3C; +CC +C, €y =€ +2¢, +24cg, ¢, =c, =20 +2(1/c9 + ¢34/, ), 11

Cip =CyF 4G5, Cp3 :CS_(\/C9 +C3\/CS)

and P, is the orthogonal Jacobi polynomial.

3.0 Factorization Method

The three dimensional the relativistic Klein-Gordon equation with mixed vector and scalar noncentral potentials
is written as

V2 + (v (r.0)- EY —(S(r.0)+ M} J(r.60.0)=0 12

Where M is the rest mass, E is the relativistic energy, and S(r,8) and V(r,0) are the scalar and vector

potentials respectively and V2 is the Laplace operator. In spherical coordinate, the Klein-Gordon equation for a
particle in the present of shifted Hulthen plus angle dependent potential V(r, 9) becomes
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The total wave function in Eq. (13) can be defined as
R(r)
y(r,0,9)= . Y(6,9) 14

and by decomposing the spherical wave function in Eq. (13) using Eq. (14) and the potential V(F,G) in Eq. (2)
) for special case of equal scalar and vector potential (i.e V, (r) =S r(r) and V, (9) =35, (49 ) ) , we obtain the

following equations:

A

2
mJ{EZ -M? +2(E+M)Vr(r)——2}R(’”) =0, 15
r

dr?

2

————Y(0,0)+[A-2AE+M)V,O)](6.0)=0 16
sin“ @ 0@

1 9 0
—| sin@—Y|6,
sinﬁaé’(sm 26 ( ¢)j+

Substituting Y(H, (0) =0(0)P(¢) into Eq. (16), we have:

2
1 i(sin Mj+ A——2_—2(E+M)V,(6) |8(6) =0, 17
sin @ dé do sin” @
d’®(p)
E 20 L mra(p) =0, 18

where A =1(l+1) and m” are the separation constants. The solution of Eq. (18) is well known [46].

Equations (15) and (17) are the radial and angular parts of Klein-Gordon equation respectively which are subject
for discussion in the preceding section.

4.0 Solutions of the Radial Klein-Gordon Equation
For eigenvalues and corresponding eigen functions of the radial part of the Klein-Gordon equation, we substitute

Eq. (3) into (15) to obtain
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d*R(r) ., 22 ) A
2+ E-M*+2(E+M)>~—"2 - [R(r) =0. 19
- r

dr?

Equation (19) has no analytical or exact solution for [ # (0 due to the centrifugal term, but can be solved

approximately. Here we make use a newly improved approximation scheme [10] as

r 2r
1 1|1 e? e’
At T oy
l—e? l—e ®
Substituting Eq.(20) into
2
IR0 g omreo(Erm) o (E+M)2—iz L
dr - r b 12
e’ =11 p? et -1
i 21
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gives

R(r)=0.
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Fig.2: The centrifugal term 1/ 7 and its approximation forb = 0.5 .

1
The comparison of the approximation of Eq.(20) for b =0.5 denoted as F1 with the centrifugal term — s
r

presented in Fig.2. This shows that the approximation is in good agreement with the centrifugal term.

r

Taking the transformation, s = e * , Eq. (21) reduces to

dzR(s)+ (1-s) dR(s) , 1

ds? s(l—s) ds Sz(l—s)z [— Os +Q2s—Q3]R(S) =0, =

where the following dimensionless quantities have been defined as

—e*=p(E-Mm?). 23

2 2 2’
Q =€+2b (E+M)V0—(E+M)+E, 24
Q, =2 +2b (E+M)VO—(E+M)—? 25
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Comparing Eq. (22) with Eq. (7) and making use of Eq. (11), we obtain the following parameters:

¢, =c,=c; =1,

E=0,=€"+20*(E+ M)V, —(E+M)+%

§Z:Q2=2,92+2172(E+M)vo—(E+M)——56’1
A

_ 2

{=0,=¢ +12

c, =0, c; :—%, c6:i+82+2b2(E+M)VO—(E+M)+%

c, =2 =20 (E+M)V, +(E+M)+%,

c8:€2+i’c9:l+l’ C10=1+2 €2+i
12 4 V 12
c,=2+2 \//1+l+\/€2+i ,612:,/€2+i, c13:—l— \//1+l+\/gz+i . 27
4 12 12 2 4 12

Substituting Eqs.(23)-(27) into Eq. (9),we obtain the energy eigenvalues equation for SHAD potential as

n’ +%(2n+1)+(2n+1)(\//1+i+\/82 +%J—282 -2b*(E+ M)V, +(E+M)+%

+ 2[82 +ij + 2\/[52 +iJ(/1+lj =0. 28
12 12 4

Solving Eq.(28) explicitly, we obtain the energy eigenvalues for the radial part of the Klein-Gordon equation for
equal scalar and vector SHAD potential as
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Using Eqgs.(10) and (27), corresponding wave function of the radial part is obtained as
Loy
R(s)= N, s“(1—s)" P®2)(1-25), 30

. . _, b .
Using the transformation, § = e , Eq. (26) can also be written as

_wr AT r
R(r)=N,e * [l—e bJ RZ(Z”’ZV)[I—Ze bJ : 31

where N ,; 18 a normalization constant.

5.0 Solutions of the Polar (angular) Part

The eigenvalues and the eigen functions of the polar part of the Klein-Gordon equation in this case can be
obtained by making use of Eqs. (4) and (17). Substituting Eq. (4) into Eq. (17), we have:

sin@ do i

2 2 4
1 i(sinﬁﬁej—k Ao+ m) P EPCOS 01 3cos B g 4 30
deo sin” @ cos” @sin” @

Using the transformation, g = cos’ @ , Eq. (28) reduces to

d’0(g) , (1-3q) do(9) 1
dg>  2q(l-q) dg  4q*(1-q)
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y —(A+2(E+M)3)g?

+(A-m* —2E+M)B)g-2E+M)y 0@)=0 !

Comparing Eq. (33) with Eq. (7) we obtain the following parameters:

c —l c —3 c, =1
1_2’ 2_27 3 7 b
1 1 1
51=Z(ﬂ+2(E+M)S), §2=Z(ﬂ—m2—2(E+M)ﬂ), §3=5(E+M)7,
1 1 1 1
C4_Z,CSZ—Z,C6:B+Z(/1+2(E+M)S)
c7:—1—l(/1—m2—2(E+M)ﬁ), c8=i+1(E+M)y,
8 4 16 2

p—

ey =—(m>+2(E+M)y+2(E+M)B+2(E+M)3),

N

Co =1+2\/%(E+M)7+%,

¢ :2+2(%\/m2 +2E+M)y+2E+M)B+2E+M)3 +\/%(E+M)7+%}

1 1 1
Ca :Z+\/E(E+M)7+R’

cn:—i—(%\/mz+2(E+M)7+2(E+M)ﬁ+2(E+M)S+\/%(E+M)7+%} 34

Substituting Eq. (34) into Eq. (9), we obtain the relation for Aas

/1:4(n+%j2+2(2n+1{\/m2 +2E+M)y+2(E+M)B+2(E+M)3 +\/2(E+M);/+%J

+ 2\/(}712 +2(E+M )y + 2(E+M),3+2(E+M)3(2(E+M)7+ij

+m* +4E+M)y+2(E+M)B,
35

For the corresponding wave function of the angle dependent part, we obtain by substituting Eq. (34) into Eq. (10)
as
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[ 2(E+M );/+l ,\/m2 +2(E+M )y+2(E+M )B+2(E+M )Sj
4

x P, (1-29)

Equation (36) can further be written as
@(0) _ NW, (COS 0)%+ 2(E+M)y+i (Sil’l 0)\/m2+2(E+M)y+2(E+M)ﬂ+2(E+M )3
37

[ 2(E+M)y+i,\/m2+2(E+M)y+2(E+M)ﬁ+2(E+M)3]
4
X P,

where N ,, 18 a normalization constant.

(- cos 26)

For the effect of the angle dependent part on the radial solutions of the Klein-Gordon equation, we substitute

Eq.(35) into Eq.(29) and obtain

1 2
15| n+— 2
) 15 2 111
2 (E+MWV, +(E+M)+—+——"2 +5+|n+ -+ |1+~
o] 64 4 2740 "2
4b? (n+1+1)

(2n+1)\/2(E+M)7/+ !

+
6b’

where

D 2
4 +{m +2(E+AI[2)Z')62+4(E+M)7}+0'

5=1§5(2n+1)[\/m2 +2E+M)y+2(E+M)B+2(E+M)3 +1/2(E+M)7+iJ

+ %\/(m2 +2(E+M)y+2(E+M)/)’+2(E+M)3(2(E+M)7’+ﬂ

Jr%[m2 +4(E+M)y+2(E+M)B)
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+ 2\/(m2 +2(E+M)y+ 2(E+M),6’+2(E+M)5{2(E+M)7/+ﬂ +4(n+%)2 : 40

Finally, we can write the total wave function for the system as

N 1 —ﬂ-#imqo _r E-H/ (2u.2v) _r
w(r,0,p)=—2m—c v |1-e? | P#¥)|1-2¢ ¢
N2 r

X (COS 9)%4’\/@ (Sin 0)\/m2+2(E+M)}/+2(E+M)ﬁ+2(E+M)S

( 2(E+M )7+i Am2a2(E+M )y+2(E+M ) B+2(E+M )S]

X P,

(- cos 20), 41

where N . 18 the normalization constant.

If weset V,=y= 3 =0 and b =0, it is found that our potential in Eq. (1) reduces to a potential of the form

2
V(”,Q):h—%- 42
24 r°sin” 8

Substituting these parameters into Eqs.(38) and Eq.(41), we obtain the corresponding energy spectrum and the

wave function of this potential respectively. Also, setting ¥ = ,5 =3 =0, and mapping e — 0 reduces
Eq. (1) into Hulthen potential of the form [48]
Vi
V(r)=-—"=. 43
e’ -1

Substituting these parameters in the energy spectrum of Eq.(38) and wave function of Eq.(41), we obtain the
desired energy spectrum and the wave function of the Hulthen potential respectively. Finally, setting

y=p4=8=0, b=0 andmappingzibz%()
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reduces Eq.(1) to constant potential.

6.0 Conclusion

In this paper, we have obtained the approximate bound state solutions of the relativistic Klein-Gordon equation
in the case of equal scalar and vector shifted Hulthen plus angle dependent potential using parametric form of
Nikiforov-Uvarov method with the help of approximation scheme in ref.[10] to evaluate the centrifugal term.
The bound states energy eigenvalues and the corresponding wave functions in terms of Jacobi polynomial are
obtained. Our results could be used to study the interactions and binding energies of the noncentral potential for
diatomic molecules in the relativistic framework. The results will also have many applications in chemical and
molecular physics and the recently reported result of neutron-proton pairs in heavy nuclei using perturbation
theory [49]. Also, this problem under investigation will have great applications in the nonrelativistic quantum
mechanics in the limiting cases as reported in recent works [50-52]. By appropriate choice of potential
parameters our potential in Eq. (1) reduces to few well known potentials in the literature.
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