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Abstract 

In this paper, Compton profile of (Ni) was Calculated by employing both the renormalized-free atom(RFA) 

model and free electron(FE) model setting several configurations in subset (3d-4s). The results were  compared 

with recent data ,It shows that the RFA calculation in(3d
8.8

-4s
1.2

) gives a better agreement with experiment.The  

calculated data   used  for the first time also to compute the cohesive energy of Nickle  and compared it with 

available data.  The Band structure and Density of state of Nickel crystals(DFT-LDA) also calculated by using 

code Quantum wise. 
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Introduction 
 Nickel is the silvery-white. Hard ,malleable, and ductile metal. It is of the Iron group and it takes on a high 

polish. It is a fairly good conductor of heat and electricity. In its familiar compounds nickel is bivalent, although 

it assumes other valence. It also forms a number of complex compounds. Most nickel compounds are blue or 

green.Nickel dissolves slowly in dilute acids but , Like iron , becomes passive when treated with nitric acids. 

Finely divided nickel adsorbs hydrogen[1-2]. In the last decade Compton scattering has been recognized as a 

powerful tool to study electron structure in light and medium transition metals [3-6], experimental results were 

predicted reasonably well at medium and high-momentum (Pz> 3.0 a.u) by the free atom profiles. In the low 

momentum region more refined calculation employing both the band structure as well as simple renormalized 

free atom (RFA) models can explain the Compton line shapes. Among 3d metals, very little work has been 

reported on Ni. The first Compton profile measurement on polycrystalline Ni and observed that the measured 

values were much flatter than the convoluted free atom values at low momenta[7]. The Compton Profile of Ni 

were calculated by using spin-polarized self-consistent LCGO band-structure method within the local-density-

functional theory[8]. The electronic properties and Compton Profile of Zn and Cd were reported by Brener et 

al[9]. Electron momentum density and X-ray Structure Factors of Copper using Compton spectrometer 

Am
241

[10]..First experimental Compton profile for (Ni) reported by Paakkari et al [11].It is known that the 

Compton profile, J(pz),can  provide information  about the projection of electronic momentum distribution on the 

scattering  wave vector [12]. Within the impulse  approximation, J(pz) is given by: 

 ����� = ����	� 
��	
�
														�1�																		 
 

Where pz and pyare  the  momentum components  in x and y  directions while  the z direction is  parallel to the  

resultant of  the incident and scattered  wave vectors,		� (	p)momentum density [13].In all these studies the 

electron momentum, is pzexpressed in atomic units (a.u.) where e =ℏ= m = 1,c =137 and 1 a.u. of momentum 

=1.993 x10
-24

kg . m/s.In§2 we present the details of theoretical calculation .In§3and 4described the result and 

discussion, conclusions. Objective of the studyis due to the shortage of refine calculation of electronic 

momentum density (Ni). In determining these areas, the contributions of (1s) electrons were taken up to 6 a.u. 

for Ni because beyond these values the recoil energy becomes smaller than the corresponding K-shell binding 

energy [14]. 

 

Calculation 

   2-1 Renormalized – Free-Atom (RFA) model: 

The  renormalized - atom  approach was the firstly to be  used  by [15]. In the  RFA  model  one  starts  with  the 

free –atom wave function, truncates them  at the  Wigner-Sites  (WS) Sphere  and  renormalizes  the  wave 

function to one within this Sphere to preserve  charge  neutrality . 

For bcc metals, the Compton profile for  4s  electrons,  can  be written by as [16]: ���	���� = 4�� |Ψ������|��
���  �����																							�2� 

Where ��is a reciprocal  lattice vector and ��the  projection  of electron  momentum  along  the scattering vector 

direction. Ψ������is the Fourier transform of the RFA wave function ϕ���#). 
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 (S_Electrons): The procedure for computing Compton profiles is already published and here we rewrite these 

equation for the sake of completeness. Following  Berggren [17] the momentum transform of a Bloch function ( 

for the unhybridised outermost “s” electrons ) for the cubic structures is given by: Ψ$%%	�p%	� = Nδ)p − k%	,k%	-.Ψ$%%	/�p%	�																											�3� 
Here N is the total number of atoms ,k%	- is the reciprocal lattice vector and the transform Ψ$%%	/�p%	� is defined as: 

Ψ$%%	/�p%	� = �2π�23�4e26	7%%	.9%	Ψ$%%	 �r	�dr																		�4� 
Where the integration is over the Wigner-Seitz polyhadron .In the conventional cell approximation and the 

transform <=%	�#	� = >?.=%	@	<=%	���#	�                                                                  (5) 

When A�%%%%	 = �%	 − A%		, Bℎ>D	A%	 = 0 Ψ$%%	/�p%	� = 	Ψ�/)k%	-.                                                                          (6) 

For       A� = 0 

<���0� = �2/��G�4 
#	#�@H
�

I���#�																																			�7�							 
And for   A� ≠ 0 Ψ�/)k%	-. = �2/��LMA�2G N 
#	#OPD�A�@H� #�QI���#� − I���#��R													 (8) 

The auxiliary function  �����is given as. 

For D = 0 

 ����� = S 12 ��T� − ������ ≤ �T0																																											VBℎ>#WPO>																																		�9� 
  For D ≠ 0 

 ����� = Y 0																													�� > �� + �T													 \������� ∈ ��� − �T , �� + �T�																																							�10�																			 \���� − �T��� < �� − �T  

Where 

 \����� = _`a)bcM2dM̀.�d`ebc2bf�2Lgh�d`ebc�g2bfgied`h�d`ebc�M2	bfMij�d` 									(11) k� is the number of reciprocal lattice points in the shell in the reciprocal space,as regards the wave function for 

4selectrons, the free atom Hartree -Fock wave function was taken from tables of [18].The Compton profile was 

then calculated using equation (2) to (6) for several cases choosing various ( 3d-4s) configuration. The Compton 

profile values of the of 3d  shell and other inner shell electrons were taken from [19]. All the theoretical values 

were normalized to an area of 11.88267.As usual in all 15 shortest reciprocal lattice vectors were considered.   

 

2-2 Free Electron–based model profile: 

In case of an isotropic momentum distribution, equ (1) reduces to the well-known form: 

��l���� = 2�4 
��
mf ���	��																									�12�				 

If we consider the valence electrons in a metal as a non-interacting electron gas, then the momentum density by:                                                                      �)�%	. = nVDOBoDB = �pgqmcg(13) 

Where D	the number of free electrons per site and	�Tis the Fermi momentum.        

Substitution of ����  from eq.(13) to eq.(12) gives:                           ��l���� = 3��mcg ��T� − ����				rV#	�� ≤ �T                                  (14) 

The free electron Compton profile is then an inverted parabola including discontinuities of the first derivative 

at	 ± pT[6].Using eq.(14), we have also calculated the free electron Compton profile for 4s electron ofFe. 

To get a total profile in the momentum  range ( 0 to +6)a.u., the Compton profile for core electrons(1s
2
 to 3d

8
) 

were directly taken from the tables of Biggs et al [20]. 

 

2-3 Cohesive energy: 

The cohesive energy which is defined as the difference between the total  ground –state energy  of  the solid  and  

the  energy  of  the individual  isolated  atoms  can  be calculated  from  Compton  profile data  [21]  using  

following  relation: 
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Evwx = 4 py�Q	J{�py� −
7|}~

�
J���py�Rdpy																																														�15� 

Where the J{�py�and  J���py�refer to  solid state and free atom profiles, respectively. In our calculation ,Pmaxwas  

taken  as  infinite. The  values  of J{�py�were taken from the present RFA  calculation  which  represents the 

solid-state phase of (Ni) and those for  from free atom  Comptonprofile  tablesI.the  contribution core electrons 

are same in theJ{�py�and  J���py�and hence  cancel  out  in the difference seen in Eq(15) . 

2-4 Band structure:  

The one-electron band structure energy is given by[22]: 

����� =�� 4 �	k?���
� −�D?,����
��

2�
�? 																					�16� 

Here,The summation extends over all atomic sites P,k?��� is the local electronic density of states , and �� is the 

Fermi energy which is a global quantity. The reference energy of an isolated atom is expressed in terms of the 

energy levels  �� and the corresponding occupation numbersD?,� which satisfy the condition. 

�D?,�� = 4 k?���
�	
��

2�
																																																															�17� 

With this definition , ����� is zero for both empty and full bands. 

In Fig (1). we show the band structure of a Ni (fcc) crystal as obtained bythe(DFT-LDA) using code Quantum 

wise. And it was compared with thetight-binding and the ab initio LDA method [22]. We find that the agreement 

between these two calculations is very good,especially in the energy range close to the Fermi level EF.  

 
Figure 1.Band structure of Ni(fcc)obtained the(DFT-LDA) using code Quantum wise. 

 

 

2-5 Density of state: 

The magnetic interaction in this  system can be  obtained using the Stoner-  theory  of itinerant 

ferromagnetism[22].This theory describes the electronic structure of the magnetic system by a rigid shift of the 

spin-up and spin-down states as. k↑��� = k�� + ∆�↑�                                                                     (18) k↓��� = k�� − ∆�↓�                                                                     (19) 

Here,k↑��� and k↓��� are the densities  of states for spin-up and spin-down electrons corresponding to majority 

and minority sub bands,respectively ,and k��� is the density of states for the nonmagnetic state .the energy 

shifts  ∆�↑ and ∆�↓ of k↑��� and k↓��� with respect tok��� are constrained by the charge conservation[22]. 

4 k���
��

��2∆�↓
= 4 k���																																					�20�

��e∆�↑
��

 

 Our results  for the corresponding total electronic density of states k���of Ni (fcc) at displayed in Fig 2 ,again 

in very good agreement with each other . the density of states is dominated by a large peak near the Fermi level 

which is responsible for a stable ferromagnetic phase of Ni (fcc).   
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Figure 2 .Nonmagnetic density of states for Ni(fcc) obtained the(DFT-LDA) using code Quantum wise . 

 

 

 

Results and Discussion 
  Table 1. Includes three theoretical profiles for (3d

9
-4s

1
,3d

8.9
-4s

1.1
,3d

8.8
-4s

1.2
) computed by   RFA model using 

the procedure of Sec.2.A. The free atom values for (3d
8
-4s

2
) are also included for comparison. Also given here 

are the Free  electron  profile .All the theoretical values given in this table I are obtained after convoluting the 

theory with the residual instrumental function (RIF) of 0.6 a.u. and normalized to an area of 11.88267 being the 

number of electrons form 0 to 6 a.u. Now  we   compare the various theoretical and experimental Compton 

profiles given in this table I . for the high momentum  region (pz>2.0a.u.), it is seen that all theoretical values are 

nearly equal, This is easily understood because in this region only core electron contribute  to scattering process 

and for them the same model has been used in all cases. It is interesting to note that values are close to the 

experiment. 

Coming next to the low momentum region(pz=0-0.5a.u.) , it is seen that the free atom model shows  the 

maximum disagreement. On the whole the RFA values are considerably  flatter but the free electron values are 

close to the experiment.In Fig 3. shows this comparison where we plot the theoretical (except free atom) and 

experimental results upto 5a.u.[20].when (pz>0.5a.u.)It is seen that the RFA values for (3d
8.8

-4s
1.2

) are  lower  

than (3d
9
-4s

1
,  3d

8.9
-4s

1.1
) results  but between (pz>0.8a.u.)a.u.the  trend  is reversed and the(3d

8.8
-4s

1.2
) values are 

higher than from ( d
9
-4s

1
, 3d

8.9
-4s

1.1
 ). 

Comparison  between  Free  electron and  Free  atom,  it  is seen  in  low momentum Free  atom  (3d
8
-4s

2
) higher  

than  the Free electron  (3d
8
-4s

2
) but in part between  ��= (0.3 and 0.8) the  trends  get  reversed  and  the  free 

electron  values  are  somewhat  larger than  the  free  atom . At ��> 0.9 a.u. both  models  values  to  become 

similar. In Fig(4) shows the difference between theoretical (after convolution)  and  experimental profiles  in Fe. 

It  can  be  seen  in the  low  momentum  that	∆�(3d
9
-4s

1
, 3d

8.9
-4s

1.1
 –Exp) larger  than  from∆�(3d

8.8
-4s

1.2
-Exp), 

as  well  as the∆� ( 3d
8.8

4s
1.2

-Exp), have  similar  values only in low  momentum  different, but  (Free  atom - 

Expt  and  Free Electron -Expt) are nearly the same where ��>1.a.u.Also in the high momentum transfer region 

(�� >4 a.u.) ,Experimental values are very close to corresponding theoretical data. It is known that the 

contribution of valence electron is very small in this region and hence, most of the contribution may be due to 

the inner-core electrons. These inner-core electrons are reasonably described by the free-atom values. In order to 

determine the best configuration electrons, the total square deviation∑ |∆�|��	�.�.� was obtained for each cases .The 

values founded were(0.3001139, 0.292883, 0 .292636) for (3d
9
-4s

1
,3d

8.9
-4s

1.1
,3d

8.8
-4s

1.2
) configuration 

respectively.Thus (3d
8.8

-4s
1.2

) seems to be the best configuration. From this we can observe by effect 

ofconvolution the theoretical values.The purpose of the computation of cohesive energy was to see the 

applicability of the RFA scheme in reproducing the cohesive of transition metals. The value of calculated 

cohesive energy (with pmax=2.a.u.). Table 2. Show comparison between our theoretical by RFA model, 

experiment [20] and another data. A choice of low value of  pmax is justified because,to a good approximation 

,after this value the major contribution in the theoretical and experimental profile is expected only due to core 

electrons, which almost remain. unaffected in formation of solids. 
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Table 1: Theoretical results Compton profile of Nickel (Ni) compared with experimental value [20]. All 

the quantities in atomic units .All theoretical values have been convoluted with the residual instrumental 

function (RIF) of 0.6 a.u. These values have been normalized to 11.88267 electrons as discussed in the text.  

 

 

 

 

Pz 

(a.u.) 

 

J(pz)(e/a.u.) 

 

 

Free atom 

(3d
8
-4s

2
) 

 

 

Free 

electron 

(3d
9
-4s

1
) 

Theory(RFA)  

 

Expt. 

[20] 

Core 

+RFA 

3d
9
-4s

1 

Core 

+RFA 

3d
8.9

-4s
1.1

 

Core 

+RFA 

3d
8.8

-4s
1.2

 

0.0 
6.720 5.383 5.232 5.208 5.192 5.18 

0.1 
6.357 5.313 5.175 5.156 5.143 5.17 

0.2 
5.915 5.211 5.089 5.075 5.066 5.11 

0.3 
5.511 5.082 4.98 4.973 4.969 5.03 

0.4 
5.145 4.928 4.853 4.852 4.853 4.92 

0.5 
4.807 4.752 4.705 4.708 4.714 4.77 

0.6 
4.506 4.563 4.543 4.55 4.558 4.6 

0.7 
4.255 4.373 4.379 4.387 4.395 4.42 

0.8 
4.053 4.195 4.223 4.228 4.236 4.24 

1.0 
3.756 3.890 3.944 3.944 3.948 3.89 

1.2 
3.512 3.632 3.691 3.689 3.689 3.55 

1.4 
3.264 3.377 3.431 3.428 3.428 3.22 

1.6 
3.000 3.109 3.156 3.153 3.153 2.91 

1.8 
2.729 2.836 2.874 2.871 2.871 2.63 

2 
2.465 2.566 2.596 2.594 2.594 2.36 

3 
1.435 1.493 1.504 1.504 1.504 1.38 

4 
0.894 0.925 0.932 0.933 0.934 0.87 

5 
0.643 0.660 0.665 0.666 0.667 0.53 

 

Table 2: Cohesive energy of Nickel.(����( in eV) 

Reference  ����( in eV) 

Our theoretical(RFA) 4.97 

Experiment[21] 4.44 
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Fig 3:Comparison of theoretical results with experimental [20] Compton profiles for Ni. 

 
Fig 4: Difference between our theoretical and experimental [20] 

Compton profiles of Ni. 

 

Conclusion 

  The RFA model shows good agreement with the experiment in the (3d
8.8

-4s
1.2

 ) configuration,  while  free 

electron model are higher than experimental. Evidently, there is a need for a relativistic band structure 

calculation to interpret the Compton profile data. In table I illustrate the comparison between theoretical results 

using (RFA) model with previous works [20] in the process transfer charge of shells (s,d).The cohesive energy of 

Nickel computed by (RFA) model and comparison with another results [20]. 
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