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Abstract 

The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to 

thermo-mechanical loading due to thermal laser pulse. Laplace transform and Fourier transform techniques are 

used to solve the problem. Thermo-mechanical laser interactions are taken as concentrated normal force and 

thermal source to describe the application of approach. The closed form expressions of normal stress, tangential 

stress, coupled stress and temperature are obtained in the transferred domain. Numerical inversion technique of 

Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical 

domain after developing a computer program. The normal stress, tangential stress, coupled stress and 

temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are 

deduced from the present investigation.  
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1. Introduction 

Very rapid thermal processes (e.g., the thermal shock due to exposure to an ultra-short laser pulse) are interesting 

from the stand point of thermoelasticity, since they require a coupled analysis of the temperature and 

deformation fields. A thermal shock induces very rapid movement in the structural elements, giving the rise to 

very significant inertial forces, and thereby, an increase in vibration. Rapidly oscillating contraction and 

expansion generates temperature changes in materials susceptible to diffusion of heat by conduction [1]. This 

mechanism has attracted considerable attention due to the extensive use of pulsed laser technologies in material 

processing and non-destructive testing and characterization [2, 3]. The so-called ultra short lasers are those with 

pulse durations ranging from nanoseconds to femto seconds. In the case of ultra short pulsed laser heating, the 

high intensity energy flux and ultra short duration lead to a very large thermal gradients or ultra-high heating 

may exist at the boundaries. In such cases, as pointed out by many investigators, the classical Fourier model, 

which leads to an infinite propagation speed of the thermal energy, is no longer valid [4]. Researchers have 

proposed several models to describe the mechanism of heat conduction during short-pulse laser heating, such as 

the parabolic one-step model [5], the hyperbolic one-step model [6], and the parabolic two-step and hyperbolic 

two-step models [7,8]. It has been found that usually the microscopic two-step models, i.e., parabolic and 

hyperbolic two-step models, are useful for thin films. 

Laser technology has a vital application in nondestructive materials testing and evaluation. When a 

solid is heated with a laser pulse, it absorbs some energy which results in an increase in localized temperature. 

This cause thermal expansion and generation of the ultrasonic waves in the material. First of all Scruby et al. [10] 

considered the point source model. He studied the heated surface by laser pulse irradiation in the thermoelastic 

system as a surface center of expansion (SCOE). Rose [14] later presented a more exact mathematical basis. 

Point source model explain main features of laser-generated ultrasound waves but this model fails to explain 

precursor in epicenter waves. Later introducing the thermal diffusion McDonald [11] and Spicer [12] proposed a 

new model known as laser-generated ultrasound model. This model reported excellent agreement between theory 

and experiment for metal materials. But due to the optical penetration effect this model cannot be applied to the 

study of laser-generated ultrasound in non-metallic material directly. The optical absorption occurs at the surface 

layer in metallic materials, and the heat penetration is resulted due to heat diffusion. In non-metallic materials, 

the laser beam can penetrate the specimen to some finite depth and induced a buried bulk- thermal source, so the 

features of the laser-generated ultrasound will be significantly different from that in metallic materials. Dubois 

[13] experimentally demonstrated that penetration depth play a very important role in the laser-ultrasound 

generation process.  

The irradiation of the surface of a solid by pulsed laser light generates wave motion in the solid 

material. There are generally two mechanisms for such wave generation, depending on the energy density 

deposited by the laser pulse. At high energy density, a thin surface layer of the solid material melts, followed by 

an ablation process whereby particles fly off the surface, thus giving rise to forces that generates ultrasonic 

waves. At low energy density, the surface material does not melt, but it expands at a high rate and wave and 

wave motion is generated due to thermoelastic processes. As opposed to generation in the ablation range, laser 

generation of ultrasound in the thermoelastic range does not damage the surface of the material. For applications 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.40, 2015         

 

11 
 

in non destructive evaluations ultrasound generates by laser irradiation in the thermoelastic regime is of interest 

and will be dealt with in this paper. 

 

Basic Equations: 

The equations of motion are:- 

 

���,� � � ��	
���	                                         (1.1)                                                                                                                   

������� ����,� � �� ��	����	 ,                 (1.2) 

                                                                                                                     

The constitutive laws are: 

��� � ���,���� � ����,� � ��,�� � ����,� � ������� � � !1 � # �
��$ ���%,                                                          (1.3) 

��� � &��,���� � '��,� � ���,�	,               (1.4)   

 

The heat conduction equation is: 

 

�∗*+% � �,- ! ��� � ./ �	
��	$% � !1 � 0/./ �

��$ !%/� �
�,�
�� � �1$,          (1.5)  

Here,   

 1 � 2/34�564758495                  (1.6)  

34�5 � �
�/+ :

;! ��<$ 

6475 �  
+=�	 :;>

?	
@	A  

8495 � �∗:;B∗C 

Putting these values of 34�5, 6475, 8495 in equation (6), we have: 

1 � 2/�∗
2EF+�/+ �:

;! ��<$:;>G
	

�	A:;B∗C 

Here �, � are Lame’s constants, � is the thermal conductivity, � is density, H is current density vector, I- is the specific heat at constant strain, : is dilatation, � is time, ��� is couple stress tensor, ./, J are relaxation 

times, %/ is the reference temperature, % is the temperature, K��� is the alternate tensor, ��� is the stress tensor, �/ 

is the pulse rise time, ��  are the components of displacement vector, L  is the microrotation vector, ���  is 

Kroneker’s delta function, 2/ is the energy absorbed and M, &, ', � are the micropolar constants.  

In the above equations symbol (“,”) followed by a suffix denotes differentiation with respect to spatial 

coordinates and a superposed dot (“ 	N ”) denotes the derivative with respect to time respectively. 

 

2. Formulation of the problem: 

We consider a micropolar generalized thermoelastic solid with rectangular Cartesian coordinate system OP P+PQ  having origin on 7Q -axis with 7Q -axis pointing vertically downward the medium. A normal 

force/thermal source is assumed to acting on the origin of the rectangular Cartesian co-ordinate system.   

 

If we restrict our problem for plane strain parallel to 7 7Q-plane with 

 R � 4� , 0, �Q5,	L � 40, �+, 05,                 (2.1)   

Then the field equations in micropolar generalized thermoelastic solid in the absence of body forces and body 

couples the equations of motion can be written as: 

4� � �5 �T
�GU � 4� � �5*+� � � ��	

�GV � � !1 � # �
��$ �W

�GU � � �	
U
��	 	,             (2.2)                                                     

4� � �5 �T
�GV � 4� � �5*+�Q � � ��	

�GU � � !1 � # �
��$ �W

�GV � � �	
V
��	 	,            (2.3)                                                            

� !�
U�GV � �
V
�GU$ � �*+�+ � 2��+ � ���+	,                 (2.4)                                                                                              

�∗*+% � �,- ! ��� � ./ �	
��	$% � !1 � 0/./ �

��$ !%/� �T
�� � �1$,          (2.5)                                                                    

 

For further consideration it is convenient to introduce in equations (1.1)-(1.5) the dimensionless quantities 

defined as: 

 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.40, 2015         

 

12 
 

�7 ′ , 7Q′ � � X<
Y< 47 , 7Q5, �� ′ , �Q′ � � ZX<Y<

BUW< 4� , �Q5, �� ′, ./′ , #′� � 0/4�, ./, #5, % ′ � W
W< , ���′ �

[�\
BUW<,	  

�+′ � ZY<	
BUW<�+		, ���′ � X<

Y<BUW<��� 		, 1′ � BU	
ZY<	1	,				                  (2.6)                                                                                      

Where  

0/ � ZY]Y<	
^∗ , � � 43� � 2� � �5&� 	 & ,/+ � 4`a+ba^5

Z  

Using these non-dimensional parameters, dropping suffices and introducing the potential functions � and c as: 

� � ��
�GU � �d

�GV and �Q � ��
�GV � �d

�GU	,                                 (2.7)                                                                                          

With the aid of equation (2.1), (2.6) and (2.7), the equations (1.1)-(1.5) reduce to: 

! �	
��	 � *+$� � !1 � # �

��$% � 0,                              (2.8)                                                                                                  

!*+ � eQ �	
��	$c � ef�+ � 0,                                                                  (2.9)  

!*+ � 2e � e+ �	
��	$�+ � e *+c � 0,               (2.10)                                                                                                       

*+% � !1 � ./ �
��$ �W

�� � eg ! ��� � 0/./ �	
��	$*+� � �1/ �� � 0/./ � X<h<

�< � :;! ii<$:;>?	@	A:;B∗C	,                     (2.11)              

 

3. Solution of the problem:  

Applying the Laplace transform on equations (2.7)-(2.10) as defined by: 

 

34̅k, 7 , 7Q5 � l 34�, 7 , 7Q5:;m�n�o
/ 	,                            (3.1)                                                                                                

And then applying the Fourier transform on the resulting equations defined by: 

3p47Q, q, k5 � l 34̅k, 7 , 7Q5:�rGUn7 o
;o 	,                        (3.2)                                                                                                  

The equations (2.7)-(2.10) reduce to the following equations: 

�k+ � ! s	
sGV	 � q+$ �t � 41 � #k5%t � 0,                                       (3.3)                                                                                 

� s	sGV	 � q+ � k � ./k+ %t � eg4k � 0/./k+5 ! s	
sGV	 � q+$�t � � u<√=�Twx∗y

+ �X<h<�< a�<m � �<	;X<h<�<4 a�<m5	  :;
z	@	
{ ,             (3.4)              

� s	sGV	 � q+ � eQk+ ct � ef�+| � 0,            (3.5)                                                                                                                     

� s	sGV	 � q+ � 2e � e+k+ �+| � e � s	sGV	 � q+ ct � 0,                                                (3.6)                              

Here, 

e � ^Y<	
BX<	 	 , e+ �

�ZY<	
B 	 , eQ � ZY<	

ba^ 	 , ef � ^
ba^ 	 , eg � W<BU	

Z^∗X<	 	 , e} � q+ � k � ./k+	, e~ � q+ � k+	, e� �
eg4k � 0/./k+5	, e� � � u<√=�

+ �X<h<�< a�<m � �<	;X<h<�<4 a�<m5	  :;
z	@	
{ 	, e / � 41 � #k5e�	, e  � q+ � eQk+	, e + � q+ �

2e � e+k+	  
Eliminating %t  from the equations (3.3)-(3.4), we obtain: 4	�f � � �+ � �+5�t � e /:;B∗C	,                        (3.7)                                                                                                      

Here, 

� � s
sGV  � � �4e} � e~ � e�5  �+ � 4e}e~ � q+e�5  

Eliminating �+|  from the equations (3.5)-(3.6), we obtain: 4�Q	�f � �f�+ � �g5ct � 0,                    (3.8)                                                                                                                        

Here, �Q � e 	, �f � �e 4q+ � e  5 � ef	, �g � e e  q+ � efe +  
Also, 

%t � �  
4 a�m5 ��+ � �+ � k+�� �t ,                 (3.9)                                                                                                                        

And �+| �  
�{ ��+ � �+ � eQk+�ct              (3.10)         

The general solution of the above equations (3.7) and (3.8) satisfying the radiation conditions that 

��t, %t, �+|,ct� → 0 as 7Q → ∞ are given as following: 

�t � �  :;�UGV � � +:;�	GV � � :;B∗GV                     (3.11)                                                                                               

%t � �+ :;�UGV � �++:;�	GV � �+:;B∗GV                                     (3.12)                                                                     
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ct � �Q :;�UGV � �Q+:;�	GV                      (3.13)   �+| � �f :;�UGV � �f+:;�	GV                   (3.14)                                                                                                                    

Here  	��+ 4� � 1,25 are the roots of the characteristic equation of equation (3.7) and 	��+4� � 3,45 are 

the roots of the characteristic equation of equation (3.8). 

And	� � ^
�4;B∗5 	 , �+ � �U

4 a�m5 ��∗+ � �+ � k+�, 
�+ � � �U	

 a�m � �	am	
 a�m  �  	,			�++ � � �		

 a�m � �	am	
 a�m  � + , 

�f �  
�{ ��Q+ � �+ � eQk+��Q 	,			�++ �  

�{ ��f+ � �+ � eQk+��Q+ , 

�  , � +, �Q , �Q , are arbitrary constants. 

 

4. Boundary Conditions: 

The boundary conditions at the surface	9 � 0, are: 

Case 1: for the thermal source: �QQ � 0,	�Q � 0  �Q+ � 0,  % � � �47 5�4�5	,                       (4.1)                                                                                                                        

Case 2: for the normal force: �QQ � ��+�47 5�4�5,	�Q � 0  �Q+ � 0,  % � 0	,                     (4.2)                                                                                                                        

Here �  is the temperature gradient source and �  is the magnitude of the applied force. 

Using these boundary conditions and using (1.3)-(1.4), (3.1)-(3.2) and solving the linear equations formed, we 

get: 

�QQ� � ∑ � �:;��GV �f�� � :;B∗GV , � � 1,2, … ,4       (4.3) 

�Q � � ∑ �+�:;��GVf�� ��+:;B∗GV ,	� � 1,2, … ,4        (4.4) 

�Q+� � ∑ �Q�:;��GVf�� ��Q:;B∗GV ,	� � 1,2, … ,4       (4.5) 

 %t � ∑ �~�:;��GVf�� ��f:;B∗GV 	� � 1,2, … ,4       (4.6) 

Particular cases 

(i) If we take	. � . � 0,			K	 � 	1	, � � ./, in Eqs. (4.2)- (4.9), we obtain the corresponding expressions of 

stresses, displacements and temperature distribution for L-S theory. 

(ii) If we take K � 	0	, � � 	./ in Eqs. (4.2)- (4.9), the corresponding expressions of stresses, displacements 

and temperature distribution are obtained for G-L theory. 

(iii) Taking 	./ � . � ./ � 	. � � � 0  in Eqs. (4.2) - (4.9), yield the corresponding expressions of 

stresses, displacements and temperature distribution for Coupled theory of thermoelasticity. 

 

5. Numerical Results and Discussions: The analysis is conducted for a micropolar material. The values of 

physical constants are: � � 9.4   10 /	¡�;+ , 				� � 4.0   10 /	¡�;+, � � 1.0   10 }	¡�;+,			� � 1.74  10Q	�6�;Q,					� � 0.2   10; ��+,				� � 0.779   10;�	¡  
Thermal and diffusion parameters are given by ,∗ � 1.04   10Q	£�6; �; , �∗ � 1.7   10}	£�; k; �; ,				&� � 2.33   10;g�; ,																					  &�+ � 2.48   10 /�; ,				%/ � 0.298   10Q	�,				./ � 0.02,				. � 0.01,			  &Y � 2.65   10;f�Q�6; ,				&Y+ � 2.83   10;f�Q�6; ,			e � 2.9   10f�+k;+�; ,  § � 32   10g	�6; �gk;+,				. � 0.04,				./ � 0.03,				� � 0.85   10;�	�6�;Qk  

And, the microstretch parameters are taken as: �/ � 0.19   10; ��+,			&/ � 0.779   10;�	¡,				§/ � 0.5   10;�	¡,				�/ � 0.5   10 /	¡�;+  � � 0.5   10 /	¡�;+   

The trends for the normal stress	�QQ	, tangential couple stress	�Q+ , tangential stress �Q 	and microstress �Q on the surface of plane 7Q � 1 due to applied concentrated and uniformly distributed normal sources are 

shown in Figs. 1-3. The comparison of three theories of generalized thermoelasticity, namely, Lord-Shulman 

(LS), and Coupled theory (CT) has been shown in graphs. The trends are shown for two different temperatures 

i.e. one by black lines and other by red lines. The dotted curves represent the trend of various stresses for CT 

theory of thermoelasticity and the solid curves represent the trend of stresses for Lord- Shulman ‘ s theory of 

thermoelasticity.   

 



Advances in Physics Theories and Applications                                                                                                  www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.40, 2015         

 

14 
 

  
Fig. 1, variation of normal stress w. r. t. distance         Fig. 2, variation of tangential stress w. r. t. distance  

 

 
  Fig. 3, variation of coupled stress w. r. t. distance 

 

6. Conclusions 

(i) The Laplace and Fourier transforms are used to derive the components of normal stress, shear 

stress, couple stress, microstress, temperature distribution and the mass concentration. 

(ii) Values of displacement components, stress components are close to each other due to LS and CT 

theories. 

(iii) Behavior of variation of stress components is shown in figures. 

(iv) The stress components show a similar trend far from the source. 
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