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Abstract 

The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert 

Einstein's general theory of relativity, which describe the fundamental interaction (e&eb) of gravitation as 

a result of spacetime being curved by matter and energy. First published by Einstein in 1915 as a tensor 

equation, the EFE equate spacetime curvature (expressed by the Einstein tensor) with (=) the energy 

and momentum tensor within that spacetime (expressed by the stress–energy tensor).Both space time 

curvature tensor and energy and momentum tensor is classified in to various groups based on which 

objects they are attributed to. It is to be noted that the total amount of energy and mass in the Universe is 

zero. But as is said in different context, it is like the Bank Credits and Debits, with the individual debits 

and Credits being conserved, holistically, the conservation and preservation of Debits and Credits occur, 

and manifest in the form of General Ledger. Transformations of energy also take place individually in the 

same form and if all such transformations are classified and written as a Transfer Scroll, it should tally 

with the total, universalistic transformation. This is a very important factor to be borne in mind. Like 

accounts are classifiable based on rate of interest, balance standing or the age, we can classify the factors 

and parameters in the Universe, be it age, interaction ability, mass, energy content. Even virtual particles 

could be classified based on the effects it produces. These aspects are of paramount importance in the 

study. When we write A+b+5, it means that we are adding A to B or B to A until we reach 5. 

Similarly, if we write A-B=0, it means we are taking away B from A and there may be time lag until 

we reach zero. There may also be cases in which instantaneous results are reached, which however do not 

affect the classification. By means of such a classification we obtain the values of Einstein Tensor and 

Momentum Energy Tensor, which are in fact the solutions to the Einstein’s Field Equation. Terms “e” and 

“eb” are used for better comprehension of the lay reader. It has no other attribution or ascription 

whatsoever in the context of the paper. For the sake of simplicity, we shall take the equality case of 

Heisenberg’s Principle Of Uncertainty for easy consolidation and consubstantiation process. The 

“greater than” case can be attended to in a similar manner, with the symbolof”greater than” 

incorporated in the paper series. 

 

 

Introduction 

Similar to the way that electromagnetic fields are determined (eb) using charges and  currents  via 

 Maxwell's equations, the EFE are used to determine the spacetime geometry resulting from the presence 

of mass-energy and linear momentum, that is, they (eb) determine the metric of spacetime for a given 

arrangement of stress–energy in the spacetime. The relationship between the metric tensor and the 

Einstein tensor allows the EFE to be written as a set of non-linear partial differential equations when used 

in this way. The solutions of the EFE are the components of the metric tensor. The inertial trajectories of 

particles and radiation (geodesics) in the resulting geometry are then calculated using the geodesic 
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equation. As well as obeying local energy-momentum conservation, the EFE reduce to Newton's law of 

gravitation where the gravitational field is weak and velocities are much less than the speed of light. 

Solution techniques for the EFE include simplifying assumptions such as symmetry. Special classes 

of exact solutions are most often studied as they model many gravitational phenomena, such as rotating 

black holes and the expanding universe. Further simplification is achieved in approximating the actual 

spacetime as flat spacetime with a small deviation, leading to the linearised EFE. These equations are 

used to study phenomena such as gravitational waves. 

Mathematical form 

The Einstein field equations (EFE) may be written in the form:  

where  is the Ricci curvature tensor,  the scalar curvature,  the metric tensor,  is 

the cosmological constant,  is Newton's gravitational constant,  the speed of light,in vacuum, and 

the stress–energy tensor. 

The EFE is a tensor equation relating a set of symmetric 4 x 4 tensors. Each tensor has 10 independent 

components. The four Bianchi identities reduce the number of independent equations from 10 to 6, 

leaving the metric with four gauge fixing degrees of freedom, which correspond to the freedom to choose 

a coordinate system. 

Although the Einstein field equations were initially formulated in the context of a four-dimensional 

theory, some theorists have explored their consequences in n dimensions. The equations in contexts 

outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations 

(obtained when T is identically zero) define Einstein manifolds. Despite the simple appearance of the 

equations they are, in fact, quite complicated. Given a specified distribution of (e&eb) matter and energy 

in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor , as 

both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. In 

fact, when fully written out, the EFE are a system of 10 coupled, nonlinear, hyperbolic-elliptic partial 

differential equations. One can write the EFE in a more compact form by defining the Einstein tensor 

 

Which is a symmetric second-rank tensor that is a function of the metric? The EFE can then be written as 

 

Using geometrized units where G = c = 1, this can be rewritten as 

 

The expression on the left represents the curvature of spacetime as (eb) determined by the metric; the 

expression on the right represents the matter/energy content of spacetime. The EFE can then be 

interpreted as a set of equations dictating how matter/energy determines (eb) the curvature of 

spacetime.Or, curvature of space and time dictates the diffusion of matter energy. These equations, 

together with the geodesic equation, which dictates how freely-falling moves through space-time matter, 

form the core of the mathematical formulation of general relativity. 

Sign convention 

The above form of the EFE is the standard established by Misner, Thorne, and Wheeler. The authors 

analyzed all conventions that exist and classified according to the following three signs (S1, S2, and S3): 
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The third sign above is related to the choice of convention for the Ricci tensor:  

With these definitions Misner, Thorne, and Wheeler classify themselves as , whereas Weinberg 

(1972) is , Peebles (1980) and Efstathiou (1990) are  while Peacock (1994), Rindler 

(1977), Atwater (1974), Collins Martin & Squires (1989) are . 

Authors including Einstein have used a different sign in their definition for the Ricci tensor which results 

in the sign of the constant on the right side being negative 

 

The sign of the (very small) cosmological term would change in both these versions, if the +−−− 

metric sign convention is used rather than the MTW −+++ metric sign convention adopted here. 

Equivalent formulations 

Taking the trace of both sides of the EFE one gets 

 

Which simplifies to 

 

If one adds  times this to the EFE, one gets the following equivalent "trace-reversed" form 

 

Reversing the trace again would restore the original EFE. The trace-reversed form may be more 

convenient in some cases (for example, when one is interested in weak-field limit and can replace  in 

the expression on the right with the Minkowski metric without significant loss of accuracy). 

The cosmological constant 

Einstein modified his original field equations to include a cosmological term proportional to the metric It 

is to be noted that even constants like gravitational field, cosmological constant, depend upon the objects 

for which they are taken in to consideration and total of these can be classified based on the 

parameterization of objects. 

 

The constant  is the cosmological constant. Since  is constant, the energy conservation law is 

unaffected. 

The cosmological constant term was originally introduced by Einstein to allow for a static universe (i.e., 

one that is not expanding or contracting). This effort was unsuccessful for two reasons: the static universe 

described by this theory was unstable, and observations of distant galaxies by Hubble a decade later 

confirmed that our universe is, in fact, not static but expanding. So  was abandoned, with Einstein 

calling it the "biggest blunder [he] ever made". For many years the cosmological constant was almost 

universally considered to be 0.Despite Einstein's misguided motivation for introducing the cosmological 

constant term, there is nothing inconsistent with the presence of such a term in the equations. Indeed, 

recent improved astronomical techniques have found that a positive value of  is needed to explain 

the accelerating universe Einstein thought of the cosmological constant as an independent parameter, but 

its term in the field equation can also be moved algebraically to the other side, written as part of the 

stress–energy tensor: 
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The resulting vacuum energy is constant and given by 

 

The existence of a cosmological constant is thus equivalent to the existence of a non-zero vacuum energy. 

The terms are now used interchangeably in general relativity. 

Conservation of energy and momentum 

General relativity is consistent with the local conservation of energy and momentum expressed as 

. 

Derivation of local energy-momentum conservation Which expresses the local conservation of stress–

energy This conservation law is a physical requirement? With his field equations Einstein ensured that 

general relativity is consistent with this conservation condition. 

Nonlinearity 

The nonlinearity of the EFE distinguishes general relativity from many other fundamental physical 

theories. For example, Maxwell's equations of electromagnetism are linear in theelectric and magnetic 

fields, and charge and current distributions (i.e. the sum of two solutions is also a solution); another 

example is Schrödinger's equation of quantum mechanics which is linear in the wavefunction. 

The correspondence principle 

The EFE reduce to Newton's law of gravity by using both the weak-field approximation and the slow-

motion approximation. In fact, the constant G appearing in the EFE is determined by making these two 

approximations. 

Vacuum field equation 

If the energy-momentum tensor  is zero in the region under consideration, then the field equations are 

also referred to as the vacuum field equations. By setting  in the trace -reversed field equations, 

the vacuum equations can be written as 

 

 

In the case of nonzero cosmological constant, the equations are 

 

The solutions to the vacuum field equations are called vacuum solutions. Flat Minkowski space is the 

simplest example of a vacuum solution. Nontrivial examples include the Schwarzschild solution and 

the Kerr solution. 

Manifolds with a vanishing Ricci tensor, , are referred to as Ricci-flat manifolds and 

manifolds with a Ricci tensor proportional to the metric as Einstein manifolds. 

Einstein–Maxwell equations 

If the energy-momentum tensor  is that of an electromagnetic field in free space, i.e. if 

the electromagnetic stress–energy tensor 

 

is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological 

constant Λ, taken to be zero in conventional relativity theory): 
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Additionally, the covariant Maxwell Equations are also applicable in free space: 

 

 

Where the semicolon represents a covariant derivative, and the brackets denote anti-summarization. The 

first equation asserts that the 4-divergence of the two-form F is zero, and the second that its exterior 

derivative is zero. From the latter, it follows by the Poincaré lemma that in a coordinate chart it is possible 

to introduce an electromagnetic field potential such that 

 

In which the comma denotes a partial derivative. This is often taken as equivalent to the covariant 

Maxwell equation from which it is derived however, there are global solutions of the equation which may 

lack a globally defined potential. 

 Solutions 

The solutions of the Einstein field equations are metrics of spacetime. The solutions are hence often called 

'metrics'. These metrics describe the structure of the spacetime including the inertial motion of objects in 

the spacetime. As the field equations are non-linear, they cannot always be completely solved (i.e. without 

making approximations). For example, there is no known complete solution for a spacetime with two 

massive bodies in it (which is a theoretical model of a binary star system, for example). However, 

approximations are usually made in these cases. These are commonly referred to as post-Newtonian 

approximations. Even so, there are numerous cases where the field equations have been solved 

completely, and those are called exact solutions. The study of exact solutions of Einstein's field equations 

is one of the activities of cosmology. It leads to the prediction of black holes and to different models of 

evolution of the universe. 

The linearised EFE 

The nonlinearity of the EFE makes finding exact solutions difficult. One way of solving the field 

equations is to make an approximation, namely, that far from the source(s) of gravitating matter, 

the gravitational field is very weak and the spacetime approximates that of Minkowski space. The metric 

is then written as the sum of the Minkowski metric and a term representing the deviation of the true metric 

from the Minkowski metric. This linearization procedure can be used to discuss the phenomena 

of gravitational radiation. 

Ricci curvature 

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the 

amount by which the volume element of a geodesic ball in a curved Riemannian deviates from that of the 

standard ball in Euclidean space. As such, it provides one way of measuring the degree to which the 

geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space. 

The Ricci tensor is defined on any pseudo-Riemannian manifold, as a trace of the Riemann curvature 

tensor. Like the metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space of the 

manifold (Besse 1987, p. 43).  

In relativity theory, the Ricci tensor is the part of the curvature of space-time that determines the degree to 

which matter will tend to converge or diverge in time (via the Raychaudhuri equation). It is related to the 

matter content of the universe by means of the Einstein field equation. In differential geometry, lower 

bounds on the Ricci tensor on a Riemannian manifold allow one to extract global geometric and 

topological information by comparison (cf. comparison theorem) with the geometry of a constant 

curvature space form. If the Ricci tensor satisfies the vacuum Einstein equation, then the manifold is 
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an Einstein manifold, which has been extensively studied (cf. Besse 1987). In this connection, the flow 

equation governs the evolution of a given metric to an Einstein metric, the precise manner in which this 

occurs ultimately leads to the solution of the Poincaré conjecture. 

Scalar curvature 

In Riemannian geometry, the scalar curvature (or Ricci scalar) is the simplest curvature invariant of 

a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real 

number determined by the intrinsic geometry of the manifold near that point. Specifically, the scalar 

curvature represents the amount by which the volume of a geodesic ball in a curved Riemannian manifold 

deviates from that of the standard ball in Euclidean space. In two dimensions, the scalar curvature is twice 

the Gaussian curvature, and completely characterizes the curvature of a surface. In more than two 

dimensions, however, the curvature of Riemannian manifolds involves more than one functionally 

independent quantity. 

In general relativity, the scalar curvature is the Lagrangian density for the Einstein–Hilbert action. 

The Euler–Lagrange equations for this Lagrangian under variations in the metric constitute the 

vacuum Einstein field equations, and the stationary metrics are known as Einstein metrics. The scalar 

curvature is defined as the trace of the Ricci tensor, and it can be characterized as a multiple of the 

average of the sectional curvatures at a point. Unlike the Ricci tensor and sectional curvature, however, 

global results involving only the scalar curvature are extremely subtle and difficult. One of the few is 

the positive mass theorem of Richard Schoen, Shing-Tung Yau and Edward Witten. Another is 

the Yamabe problem, which seeks extremal metrics in a given conformal class for which the scalar 

curvature is constant. 

Metric tensor (General Relativity) 

 

Metric tensor of space-time in general relativity written as a matrix. 

In general relativity, the metric tensor (or simply, the metric) is the fundamental object of study. It may 

loosely be thought of as a generalization of the gravitational field familiar from Newtonian gravitation. 

The metric captures all the geometric and causal structure inspacetime, being used to define notions such 

as distance, volume, curvature, angle, future and past. 

Notation and conventions: Throughout this article we work with a metric signature that is mostly positive 

(− + + +); see sign convention. As is customary in relativity, units are used where the speed of light c = 1. 

The gravitation constant G will be kept explicit. The summation, where repeated indices are automatically 

summed over, is employed. 

Cosmological Constant 

In physical cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: Λ) 

was proposed by Albert Einstein as a modification of his original theory of general relativity to achieve 

a stationary universe. Einstein abandoned the concept after the observation of the Hubble 

redshift indicated that the universe might not be stationary, as he had based his theory on the idea that the 

universe is unchanging. However, the discovery of cosmic acceleration in 1998 has renewed interest in a 

cosmological constant. 

Gravitational constant 
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The gravitational constant denoted by letter G, is an empirical physical constant involved in the 

calculation(s) of gravitational force between two bodies.G should not be confused with "little g" which is 

the local gravitational field (equivalent to the free-fall acceleration, especially that at the Earth's surface.. 

Speed of light 

The speed of light in vacuum, usually denoted by c, is a universal physical constant important in many 

areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the 

metre is defined from this constant and the international standard for time. In imperial units this speed is 

approximately 186,282 miles per second. According to special relativity, c is the maximum speed at 

which all energy, matter, and information in the universe can travel. It is the speed at which all massless 

particles and associated fields (including electromagnetic radiation such aslight) travel in vacuum. It is 

also the speed of gravity (i.e. of gravitational waves) predicted by current theories. Such particles and 

waves travel at c regardless of the motion of the source or the inertial frame of reference of the observer. 

In the Theory, c interrelates space and time, and also appears in the famous equation of mass–energy 

equivalence = mc2 

The speed at which light propagates through transparent materials, such as glass or air, is less than c. The 

ratio between cand the speed v at which light travels in a material is called the refractive index n of the 

material (n = c / v). For example, for visible light the refractive index of glass is typically around 1.5, 

meaning that light in glass travels atc / 1.5 ≈ 200,000 km/s; the refractive index of air for visible light is 

about 1.0003, so the speed of light in air is about90 km/s slower than c. 

In most practical cases, light can be thought of as moving "instantaneously", but for long distances and 

very sensitive measurements the finite speed of light has noticeable effects. In communicating with 

distant space probes, it can take minutes to hours for a message to get from Earth to the spacecraft or vice 

versa. The light we see from stars left them many years ago, allowing us to study the history of the 

universe by looking at distant objects. The finite speed of light also limits the theoretical maximum speed 

of computers, since information must be sent within the computer from chip to chip. Finally, the speed of 

light can be used with time of flight measurements to measure large distances to high precision. 

Ole Rømer first demonstrated in 1676 that light travelled at a finite speed (as opposed to instantaneously) 

by studying the apparent motion of Jupiter's moon Io. In 1865, James Clerk Maxwell proposed that light 

was an electromagnetic wave, and therefore travelled at the speed c appearing in his theory of 

electromagnetism In 1905, Albert Einstein postulated that the speed of light with respect to any inertial 

frame is independent of the motion of the light source and explored the consequences of that postulate by 

deriving the special theory of relativity and showing that the parameter c had relevance outside of the 

context of light and electromagnetism. After centuries of increasingly precise measurements, in 1975 the 

speed of light was known to be 299,792,458 m/s with a measurement uncertainty of 4 parts per billion. In 

1983, the metrewas redefined in the International System of Units (SI) as the distance travelled by light in 

vacuum in 1⁄299,792,458 of asecond. As a result, the numerical value of c in metres per second is now 

fixed exactly by the definition of the metre 

Numerical value, notation, and units 

The speed of light in vacuum is usually denoted by c, for "constant" or the Latin celeritas (meaning 

"swiftness"). Originally, the symbol V was used, introduced by James Clerk Maxwell in 1865. In 

1856, Wilhelm Eduard Weber and Rudolf Kohlrausch used c for a constant later shown to equal √2 times 

the speed of light in vacuum. In 1894, Paul Druderedefined c with its modern meaning. Einstein used V in 

his original German-language papers on special relativity in 1905, but in 1907 he switched to c, which by 

then had become the standard symbol. 

Sometimes c is used for the speed of waves in any material medium, and c0 for the speed of light in 

vacuum This subscripted notation, which is endorsed in official SI literature, has the same form as other 

related constants: namely, μ0for the vacuum permeability or magnetic constant, ε0 for the vacuum 

permittivity or electric constant, and Z0 for the impedance. This article uses c exclusively for the speed of 

light in vacuum. 

In the International System of Units (SI), the metre is defined as the distance light travels in vacuum 

in 1⁄299,792,458 of a second. This definition fixes the speed of light in vacuum at 

exactly 299,792,458 m/s. As a dimensional physical constant, the numerical value of c is different for 
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different unit systems. In branches of physics in which cappears often, such as in relativity, it is common 

to use systems of natural units of measurement in which c = 1 Using these units, c does not appear 

explicitly because multiplication or division by 1 does not affect the result. 

Fundamental role in physics 

Speed at which light waves propagate in vacuum is independent both of the motion of the wave source 

and of the inertial frame of reference of the observer This invariance of the speed of light was postulated 

by Einstein in 1905 after being motivated by Maxwell's theory of electromagnetism and the lack of 

evidence for the luminiferous aether; it has since been consistently confirmed by many experiments. It is 

only possible to verify experimentally that the two-way speed of light (for example, from a source to a 

mirror and back again) is frame-independent, because it is impossible to measure the one-way speed of 

light (for example, from a source to a distant detector) without some convention as to how clocks at the 

source and at the detector should be synchronized. However, by adopting Einstein synchronization for the 

clocks, the one-way speed of light becomes equal to the two-way speed of light by definition. The special 

theory of relativity explores the consequences of this invariance of c with the assumption that the laws of 

physics are the same in all inertial frames of reference. One consequence is that c is the speed at which 

all massless particles and waves, including light, must travel in vacuum. 

 

 

 

The Lorentz factor γ as a function of velocity. It starts at 1 and approaches infinity as  v approaches c. 

Special relativity has many counterintuitive and experimentally verified implications These include 

the equivalence of mass and energy (E = mc2), length contraction (moving objects shorten),[ and time 

dilation (moving clocks run slower). The factor γ by which lengths contract and times dilate, is known as 

the Lorentz factor and is given by γ = (1 − v2/c2)−1/2, where v is the speed of the object. The difference 

of γ from 1 is negligible for speeds much slower than c, such as most everyday speeds—in which case 

special relativity is closely approximated by Galilean relativity—but it increases at relativistic speeds and 

diverges to infinity as v approaches c.The results of special relativity can be summarized by treating space 

and time as a unified structure known as spacetime (with c relating the units of space and time), and 

requiring that physical theories satisfy a special symmetry called Lorentz invariance, whose mathematical 

formulation contains the parameter c Lorentz invariance is an almost universal assumption for modern 

physical theories, such as quantum electrodynamics, quantum chromodynamics, the Standard 

Model of particle physics, and general relativity. As such, the parameter c is ubiquitous in modern 

physics, appearing in many contexts that are unrelated to light. For example, general relativity predicts 

that c is also the speed and of gravitational waves In non-inertial frames of reference (gravitationally 

curved space or accelerated reference frames), the local speed of light is constant and equal to c, but 

the speed of light along a trajectory of finite length can differ from c, depending on how distances and 

times are defined. It is generally assumed that fundamental constants such as c have the same value 

throughout spacetime, meaning that they do not depend on location and do not vary with time. However, 

it has been suggested in various theories that the speed of light may have changed over time No 

conclusive evidence for such changes has been found, but they remain the subject of ongoing research. It 

also is generally assumed that the speed of light is isotropic, meaning that it has the same value regardless 

of the direction in which it is measured. Observations of the emissions from nuclear energy levels as a 

function of the orientation of the emitting nuclei in a magnetic field (see Hughes–Drever experiment), and 

of rotating optical resonators (see Resonator experiments) have put stringent limits on the possible two-

way anisotropy.  

Stress–energy tensor 
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The components of the stress-energy tensor 

The stress–energy tensor (sometimes stress–energy–momentum tensor) is a tensor quantity in physics that 

describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of 

Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. The stress-

energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, 

just as mass is the source of such a field in Newtonian gravity. 

The stress–energy tensor involves the use of superscripted variables which are not exponents (see Einstein 

summation notation). The components of the position four-vector are given by: x0 = t (time in 

seconds), x1 = x (in meters), x2 = y (in meters), and x3 = z(in meters). 

The stress–energy tensor is defined as the tensor  of rank two that gives the flux of the αth component 

of the momentum vector across a surface with constant xβ coordinate. In the theory of relativity, this 

momentum vector is taken as the four-momentum. In general relativity, the stress-energy tensor is 

symmetric 

 

In some alternative theories like Einstein–Cartan theory, the stress–energy tensor may not be perfectly 

symmetric because of a nonzero spin tensor, which geometrically corresponds to a nonzero torsion tensor. 

Identifying the components of the tensor 

In the following i and k range from 1 through 3. 

The time–time component is the density of relativistic mass, i.e. the energy density divided by the speed 

of light squared It is of special interest because it has a simple physical interpretation. In the case of a 

perfect fluid this component is  And for an electromagnetic field in otherwise empty space this 

component is 

 

Where  and  are the electric and magnetic fields respectively 

The flux of relativistic mass across the xi surface is equivalent to the density of the ith component of 

linear momentum, 

 

The components Represent flux of ith component of linear momentum across the xk surface. In 

particular, (Not summed) represents normal stress which is called pressure when it is independent of 

direction. Whereas  

Represents shear stress (compare with the stress tensor). 

 In solid state physics and fluid mechanics, the stress tensor is defined to be the spatial components of the 

stress–energy tensor in the comoving frame of reference. In other words, the stress energy tensor 

in engineering differs from the stress energy tensor here by a momentum convective term.  

Governing Equations  
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All The Four Terms: 

 

First Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      13 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   ]      14 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      15 

Where  (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )  are first augmentation coefficients  for 

category 1, 2 and 3  

 

Second Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )  ]      16 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )  ]      17 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )  ]      18 



Advances in Physics Theories and Applications                                                                                                                 www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 6, 2012  

 

64 
 

Where  (   
  )( )(   )    (   

  )( )(   )    (   
  )( )(   )  are first  detrition coefficients for category 1, 

2 and 3  

 

Third Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      19 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      20 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      21 

Where  (   
  )( )(     )     (   

  )( )(     )    (   
  )( )(     )   are first augmentation coefficients for 

category 1, 2 and 3  

 

Fourth Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      22 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      23 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )  ]      24 

Where  (   
  )( )(     )  ,  (   

  )( )(     )      (   
  )( )(     )   are first detritions coefficients for 

category 1, 2 and 3  

 

Governing Equations Of Concatenated System Of Two Concatenated Dual Systems   

First  Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]      25 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]      26 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]      27 

Where (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )   are first augmentation coefficients for 

category 1, 2 and 3   

 (   
  )(   )(     )    (   

  )(   )(     )  ,  (   
  )(   )(     )  are second augmentation coefficients 

for category 1, 2 and 3    

 

Second Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )   (   
  )(   )(     )  ]      28 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )    (   
  )(   )(     )  ]      29 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )   (   
  )(   )(     )  ]      30 

Where  (   
  )( )(   )    (   

  )( )(   )    (   
  )( )(   )  are first detrition coefficients for category 

1, 2 and 3   

  (   
  )(   )(     )  ,  (   

  )(   )(     )  ,  (   
  )(   )(     ) are second augmentation coefficients for 

 



Advances in Physics Theories and Applications                                                                                                                 www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 6, 2012  

 

65 
 

category 1, 2 and 3  
   
Third Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]      31 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]      32 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(     )  ]     

33 

Where  (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )  are first augmentation coefficients 

for category 1, 2 and 3 

   (   
  )(   )(     )     (   

  )(   )(     )  ,  (   
  )(   )(     )  are second detrition coefficients for 

category 1, 2 and 3    

 

Fourth Term  

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(   )  ]      34 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(   )  ]      35 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )   (   
  )(   )(   )  ]      36 

Where  (   
  )( )(     )  ,  (   

  )( )(     )      (   
  )( )(     )   are first detrition coefficients for 

category 1, 2 and 3    

 (   
  )(   )(   )  ,  (   

  )(   )(   )  ,  (   
  )(   )(   )   are second detrition coefficients for category 

1, 2 and 3    

 

Uncertainty principle 

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting 

a fundamental lower bound on the precision with which certain pairs of physical properties of a particle, 

such as position x and momentum p, can be simultaneously known. The more precisely the position of 

some particle is determined, the less precisely its momentum can be known, and vice versa The original 

heuristic argument that such a limit should exist was given by Werner Heisenberg in 1927. A more formal 

inequality relating the standard deviation of position σx and the standard deviation of momentum σp was 

derived by Kennard later that year (and independently by Weyl in 1928), 

 

Where ħ is the reduced Planck constant. 

Historically, the uncertainty principle has been confused with a somewhat similar effect in physics, called 

the observer effect which notes that measurements of certain systems cannot be made without affecting 

the systems. Heisenberg himself offered such an observer effect at the quantum level (see below) as a 

physical "explanation" of quantum uncertainty. However, it has since become clear that quantum 

uncertainty is inherent in the properties of all wave-like systems, and that it arises in quantum mechanics 

simply due to the matter wavenature of all quantum objects. Thus, the uncertainty principle actually states 

a fundamental property of quantum systems, and is not a statement about the observational success of 

current technology 

Mathematically, the uncertainty relation between position and momentum arises because the expressions 

of the wavefunction in the two corresponding bases are Fourier transforms of one another (i.e., position 

and momentum are conjugate variables). A similar tradeoff between the variances of Fourier conjugates 

arises wherever Fourier analysis is needed, for example in sound waves. A pure tone is a sharp spike at a 
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single frequency. Its Fourier transform gives the shape of the sound wave in the time domain, which is a 

completely delocalized sine wave. In quantum mechanics, the two key points are that the position of the 

particle takes the form of a matter wave, and momentum is its Fourier conjugate, assured by the de 

Broglie relation , where  is the wave number. 

In the mathematical formulation of quantum mechanics, any pair of non-commuting self-adjoint 

operators representing observables are subject to similar uncertainty limits. An eigenstate of an observable 

represents the state of the wavefunction for a certain measurement value (the eigenvalue). For example, if 

a measurement of an observable  is taken then the system is in a particular eigenstate  of that 

observable. The particular eigenstate of the observable  may not be an eigenstate of another observable

. If this is so, then it does not have a single associated measurement as the system is not in an eigenstate 

of the observable 

The Uncertainty Principle 

The uncertainty principle can be interpreted in either the wave mechanics or matrix mechanics formalisms 

of quantum mechanics. Although the principle is more visually intuitive in the wave mechanics 

formalism, it was first derived and is more easily generalized in the matrix mechanics formalism. We will 

attempt to motivate the principle in the two frameworks. 

Wave mechanics interpretation 

 

 

The superposition of several plane waves. The wave packet becomes increasingly localized with the 

addition of many waves. The Fourier transform is a mathematical operation that separates a wave packet 

into its individual plane waves. Note that the waves shown here are real for illustrative purposes only 

whereas in quantum mechanics the wave function is generally complex. 

 

Plane wave 

 

 

Wave packet 

Propagation of de Broglie waves in 1d - real part of the complex amplitude is blue, imaginary part is 

green. The probability (shown as the colouropacity) of finding the particle at a given point x is spread out 

like a waveform, there is no definite position of the particle. As the amplitude increases above zero 

the curvature decreases, so the decreases again, and vice versa - the result are alternating amplitude: a 

http://en.wikipedia.org/wiki/File:Propagation_of_a_de_broglie_plane_wave.svg
http://en.wikipedia.org/wiki/File:Propagation_of_a_de_broglie_wavepacket.svg
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wave. 

According to the de Broglie hypothesis, every object in our Universe is a wave, a situation which gives 

rise to this phenomenon. The position of the particle is described by a wave function . The time-

independent wave function of a single-moded plane wave of wave number k0 or momentum p0 is 

 

The Born rule states that this should be interpreted as a probability density function in the sense that the 

probability of finding the particle between a and b is 

 

In the case of the single-moded plane wave,  is a uniform distribution. In other words, the 

particle position is extremely uncertain in the sense that it could be essentially anywhere along the wave 

packet. However, consider a wave function that is a sum of many waves. We may write this as 

 

Where An represents the relative contribution of the mode pn to the overall total. The figures to the right 

show how with the addition of many plane waves, the wave packet can become more localized. We may 

take this a step further to the continuum limit, where the wave function is an integral over all possible 

modes 

 

With  representing the amplitude of these modes and is called the wave function in momentum 

space. In mathematical terms, we say that  is the Fourier transforms of  and 

that x and p are conjugate variables. Adding together all of these plane waves comes at a cost, namely the 

momentum has become less precise, having become a mixture of waves of many different momenta. 

One way to quantify the precision of the position and momentum is the standard deviation σ. 

Since  is a probability density function for position, we calculate its standard deviation. 

We improved the precision of the position, i.e. reduced σx, by using many plane waves, thereby 

weakening the precision of the momentum, i.e. increased σp. Another way of stating this is that σx and 

σp has an inverse relationship or are at least bounded from below. This is the uncertainty principle, the 

exact limit of which is the Kennard bound. Click the show button below to see a semi-formal derivation of 

the Kennard inequality using wave mechanics. 

Matrix mechanics interpretation 

In matrix mechanics, observables such as position and momentum are represented by self-adjoint 

operators. When considering pairs of observables, one of the most important quantities is the commutator. 

For a pair of operators  and , we may define their commutator as 

 

In the case of position and momentum, the commutator is the canonical commutation relation 

 

The physical meaning of the non-commutativity can be understood by considering the effect of the 

commutator on position and momentum Eigen states. Let  be a right Eigen state of position with a 

constant Eigen value x0. By definition, this means that  Applying the commutator 

to  yields 
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Where  is simply the identity operator. Suppose for the sake of proof by contradiction that  is also a 

right Eigen state of momentum, with constant Eigen value p0. If this were true, then we could write 

 

On the other hand, the canonical commutation relation requires that 

 

This implies that no quantum state can be simultaneously both a position and a momentum Eigen state. 

When a state is measured, it is projected onto an Eigen state in the basis of the observable. For example, if 

a particle's position is measured, then the state exists at least momentarily in a position Eigen state. 

However, this means that the state is not in a momentum Eigen state but rather exists as a sum of multiple 

momentum basis Eigen states. In other words the momentum must be less precise. The precision may be 

quantified by the standard deviations, defined by 

 

 

As with the wave mechanics interpretation above, we see a tradeoff between the precisions of the two, 

given by the uncertainty principle. 

Robertson-Schrödinger uncertainty relations 

The most common general form of the uncertainty principle is the Robertson uncertainty relation. For an 

arbitrary Hermitian operator , we can associate a standard deviation 

 

Where the brackets  indicate an expectation value. For a pair of operators  and , we may define 

their commutator as 

 

In this notation, the Robertson uncertainty relation is given by  

 

The Robertson uncertainty relation immediately follows from a slightly stronger inequality, 

the Schrödinger uncertainty relation,  

 

Where we have introduced the anticommutator, 

 

Since the Robertson and Schrödinger relations are for general operators, the relations can be applied to 

any two observables to obtain specific uncertainty relations. A few of the most common relations found in 

the literature are given below. 

For position and linear momentum, the canonical commutation relation  implies the 

Kennard inequality from above: 

 

For two orthogonal components of the total angular momentum operator of an object: 
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where i, j, k are distinct and Ji denotes angular momentum along the xi axis. This relation implies that 

only a single component of a system's angular momentum can be defined with arbitrary precision, 

normally the component parallel to an external (magnetic or electric) field. Moreover, 

for , a choice , in angular momentum 

multiplets, ψ = |j, m 〉, bounds the Casimir invariant (angular momentum squared, ) 

from below and thus yields useful constraints such as j (j+1) ≥ m (m + 1), and hence j ≥ m, among others. 

In non-relativistic mechanics, time is privileged as an independent variable. Nevertheless, in 1945, L. I. 

Mandelshtam and I. E. Tamm derived a non-relativistic time-energy uncertainty relation, as follows For a 

quantum system in a non-stationary state  and an observable  represented by a self-adjoint operator

, the following formula holds: 

 

Where  is the standard deviation of the energy operator in the state ,  stands for the standard 

deviation of  Although the second factor in the left-hand side has dimension of time, it is different from 

the time parameter that enters Schrödinger equation. It is a lifetime of the state  with respect to the 

observable .  

It Is To Be Noted That Despite The Universality Of The Theory, Say Of Newton, There Exists What 

Could Be Called As “Total Gravity” Just Because There Is Constant  Maintenance Of Balance In 

Accounts In The Bank It Does Not Mean That There Does Not Exist Any Operations, Nor Is There 

No Total Assets Or Liabilities. In Fact Like In A Closed Economy It Does. So, When We Say The 

First Terms Of EFE Are Classified In To Various Categories We Refer To The Fact That Various 

Systems Are Under Consideration And They Of course Satisfy GTR. The Same Explanation Holds 

Good In The Stratification of The Heisenberg’s Principle Of Uncertainty. First, We Discuss The 

Equality Case. We Transfer The term Representative Of Position Of Particle Or The One 

Constitutive Of Momentum To The Other Side And The Relationship That Exists Now Betwixt 

“Position” And Momentum Is That The Inverse Of One Is Being “Subtracted “From The Other. 

This Apparently Means That One Term is taken Out From The Other. There May Or Might Not 

Be Time Lag. That Does Not Matter In Our Calculation. The Equations Represent And Constitute 

The Globalised Equations Which Is Based On The Simple Matter Of Accentuation And Dissipation. 

In Fact, The Functional Forms Of Accentuation And Dissipation Terms Themselves Are 

Designative Of The Fact That There Exists A Link Between The Various Theories Galilean, 

Platonic, Mental, GTR, STR, QM.QFT And Quantum Gravity. Finally, in Series Of Paper We 

Shall Build Up The Structure Towards The End Of Consummation Of The Unification Of The 

Theories. That One Theory Is Related To Another Is Beyond Dispute And We Take Off From That 

Point Towards Our Mission.  

                                        

 

First Term And Second Term In Efe 

    :  Category One Of The First Term In Efe               

    : Category Two Of The First Term In Efe 

    :  Category  Three of First Term In Efe      

    :  Category One Of Second Term In Efe 

    :  Category Two Of The Second Term In Efe  

    :  Category Three Of Second Term In Efe 

 

Third Term And Fourth Term Of Efe: Note Fourth Term On Rhs Is Removed From The Third 

Term  

    :  Category One Of Third Term Of Efe               
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    :  Category Two Of Third Term Of Efe 

    :  Category Three Of Third Term Of Efe 

    : Category One Of Fourth Term Of Efe 

    : Category Two Of Fourth Term Of Efe  

    : Category Three Of Fourth Term Of Efe 

 

Heisenberg’s Uncertainty Principle(Hup)  

Note The First Term Is Inversely Proportional To The Second Term. Take The Equality Case. This 

Leads To Subtraction Of The Second Term On The Rhs From The First Term This we Shall Model 

And Annex With Efe. Despite Hup Holding Good For All The Systems, We Can Classify The 

Systems Studied And Note The Registrations In Each System. As Said Earlier The First Term 

Value Of Some System, The Second Term Value Of Some Other Differentiation Carried Out Based 

On Parametricization 

    :  Category One Of First Term On Hup 

    : Category Two Of First Term Of Hup 

    : Category Three Of First Term Of Hup 

    : Category One Of Second Term Of Hup 

    :  Category Two Of Second Term Of Hup  

    : Category Three Of Second Term Of Hup 

 

Accentuation Coefficients Of Holistic System   Efe-Hup System 

(   )
( ) (   )

( ) (   )
( )  (   )

( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( ) 

(   )
( ) (   )

( ) (   )
( ): (   )

( ) (   )
( ) (   )

( )  (   )
( ) (   )

( ) (   )
( )   

 

Dissipation Coefficients Of Holistic System   Efe-Hup System 

(   
 )( ) (   

 )( ) (   
 )( )  (   

 )( ) (   
 )( ) (   

 )( )  (   
 )( ) (   

 )( ) (   
 )( )    

(   
 )( ) (   

 )( ) (   
 )( )  (   

 )( ) (   
 )( ) (   

 )( ) (   
 )( ) (   

 )( ) (   
 )( )  

 

First Term Of Efe- Second Term Of Efe: Governing Equations: 

The differential system of this model is now  
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( )    [(   
 )( )  (   

  )( )(   )]      5 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(   )]      6 

 (   
  )( )(     )    First augmentation factor  7 

 (   
  )( )(   )     First detritions factor  8 

Governing Equations: Third Term Of Efe And Fourth Term Of Efe: 

The differential system of this model is now  

 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )(     )]     9 

    

  
 (   )

( )    [(   
 )( )  (   
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  )( )((   )  )]      13 

    

  
 (   )

( )    [(   
 )( )  (   

  )( )((   )  )]      14 

 (   
  )( )(     )    First augmentation factor 15 

 (   
  )( )((   )  )     First detritions factor  16 

Governing Equations: Of The First Term And Second Term Of Hup: Note That Second Term 

(Inverse Thereof) Is Subtracted From The First Term, Which Means The Amount Is Removed For 

Infinite Systems In The World. Law Of course Holds For All The Systems By This Methodology We 

Get The Value Of The First Term As Well As The Second Term 

  

 The differential system of this model is now  
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 (   
  )( )(     )    First augmentation factor  23 

 (   
  )( )(     )     First detritions factor  24 

GOVERNING EQUATIONS OF THE HOLISTIC SYSTEM FOUR TERMS OF EFE AND TWO TERMS OF HUP: 

 

 

  

25 

26 
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Where (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )   are first augmentation coefficients for 

category 1, 2 and 3  

  (   
  )(    )(     )  ,  (   

  )(    )(     )  ,  (   
  )(    )(     )  are second  augmentation coefficient for 

category 1, 2 and 3   

30 

 

31 
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  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )  are third  augmentation coefficient for 

category 1, 2 and 3    
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Where  (   
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  )( )(   )    (   
  )( )(   )  are first detrition coefficients for category 1, 

2 and 3    
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  )(    )(     )    (   
  )(    )(     )   are second detrition coefficients for 

category 1, 2 and 3    
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  )(    )(     )  are third  detrition coefficients for 

category 1, 2 and 3    
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  )( )(     )  are first augmentation coefficients for 

category 1, 2 and 3   
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  )(    )(     )   are second augmentation coefficient 

for category 1, 2 and 3    
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  )(     )(     )  are third  augmentation coefficient for 

category 1, 2 and 3   
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category 1, 2 and 3      

 (   
  )(      )(   )    (   

  )(      )(   )  ,  (   
  )(      )(   )   are third detrition coefficients for category 

1,2 and 3  

54 

 

 

 

55 

Where we suppose 56 

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(   )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

57 

 

 

58 

59 

(C)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (   )    (  )

( )      

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants     

              and              

60 

 

61 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(    )  (  

  )( )(   )  (  ̂   )
( )          (  ̂   )( )   

 

62 

63 

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

   )   and(  
  )( )(     )   (   

   ) and (     ) are points belonging to the interval  

64 
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[(  ̂   )
( ) (  ̂   )

( )] . It is to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of 

the fact, that if (  ̂   )
( )    then the function  (  

  )( )(     ) , the first augmentation coefficient 

WOULD BE absolutely continuous.  

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

65 

  Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(E) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

       satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

66 

 

67 

 

68 

 

69 

Where we suppose  

(F) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       70 

(G) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 71 

Definition of (  )
( )   (  )

( ): 72 

(  
  )( )(     )  (  )

( )  (  ̂   )
( )

  73 

   (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( )  74 

(H)        (  
  )( ) (     )  (  )

( ) 75 

       (  
  )( ) ((   )  )    (  )

( )  76 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( ) are positive constants  and              

77 

They satisfy  Lipschitz condition: 78 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   79 

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   80 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the Second augmentation coefficient attributable to would be 

absolutely continuous.  

81 

  Definition of (  ̂   )
( ) (  ̂   )

( ) : 82 

(I) (  ̂   )
( ) (  ̂   )

( )   are positive constants 83 
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(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

84 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     85 

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     86 

Where we suppose 87 

(J) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(K) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

88 

(L)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (     )    (  )

( )           

 Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants   and              

89 

90 

91 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
     (  ̂   )( )   

93 

94 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the THIRD augmentation coefficient  would be absolutely 

continuous.  

95 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(M) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

96 

There exists two constants There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   

satisfy the inequalities  

97 
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(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

99 

 

Theorem 1: if the conditions above are fulfilled, there exists a solution satisfying the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

100 

Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

101 

102 

103 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

104 

105 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy                                              

106 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    107 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     109 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   110 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

111 

  ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  112 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  113 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  114 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  115 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

116 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy             

117 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    118 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     119 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   120 

By 121 
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 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  122 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  123 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  124 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  125 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

126 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy         

127 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )    128 

    ( )    
  (  ̂   )

( ) (  ̂   )( )     129 

    ( )    
  (  ̂   )

( ) (  ̂   )( )   130 

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

131 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
  132 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
  133 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  134 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  135 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

136 

 

(a) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

137 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

138 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying  into itself .Indeed it is obvious that  

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    139 
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           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

140 

Analogous inequalities hold also for                        

(a) The operator  ( ) maps the space of functions satisfying into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

141 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

142 

Analogous inequalities hold also for                       143 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

144 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

145 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

146 

In order that the operator  ( ) transforms the space of sextuples of functions         into itself 147 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

148 

 Indeed if we denote   

Definition of  ̃  ̃ :      (  ̃  ̃ )   ( )(   ) 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  ) 

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses it follows 

148 

 

 

 

149 

| ( )   ( )|  (  ̂  )( )  150 
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(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

151 

Remark 2: There does not exist any    where    ( )           ( )      

From Global Equations it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

152 

 

153 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

154 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

155 

 Remark 5: If       is bounded from below and       ((  
  )( ) ( ( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  

156 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

157 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

158 
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(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

159 

In order that the operator  ( ) transforms the space of sextuples of functions         into itself 160 

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

162 

Indeed if we denote   

Definition of    ̃    ̃ :     (    ̃    ̃ )   ( )(       ) 

163 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  ) 

164 

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

165 

|(   )
( )  (   )

( )|  (  ̂  )( )  
 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  

(  ̂  )
( )(  ̂  )

( )) (((   )
( ) (   )

( )  (   )
( ) (   )

( )))  

166 

And analogous inequalities for          . Taking into account the hypothesis  the result follows 167 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

168 

Remark 2: There does not exist any    where    ( )           ( )      

From GLOBAL EQUTIONS  it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

169 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 170 
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Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

 

 

171 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

172 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

173 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

174 

    (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that     is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

175 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

176 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

177 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

178 

In order that the operator  ( ) transforms the space of sextuples of functions         into itself 179 

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

180 

Indeed if we denote   

Definition of    ̃    ̃ :( (   )̃ (   )̃ )   ( )((   ) (   )) 

181 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )
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(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  ) 

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

| ( )   ( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  

(  ̂  )
( )(  ̂  )

( )) (((   )
( ) (   )

( )  (   )
( ) (   )

( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

183 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

184 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

185 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

186 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

187 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

188 

 

189 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  
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     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions of  equations 37 to 

42 

Behavior of the solutions  

Theorem 2: If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )(   )   (  )

( )  

191 

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

192 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

  By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  roots of the equations 

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

193 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

194 

and analogously 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined  

195 

 

196 

Then the solution satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )  

where (  )
( ) is defined 

 

      (  )( ) 

   
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

197 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  
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(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
199 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   200 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

201 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

202 

Behavior of the solutions  

If we denote and define 

203 

Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(d)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

204 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   205 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )  206 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) : 207 

By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots 208 

(e) of    the equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     209 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 210 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 211 

By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the 212 

roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    213 

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     214 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :- 215 

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 216 

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )  217 

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

      and   (  )
( )  

   
 

   
   

218 
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( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  219 

and analogously 220 
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(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )  

 (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

and (  )
( )  

   
 

   
   

(   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   221 

Then the solution  satisfies the inequalities 

     
  ((  )( ) (   )( ))     ( )     

  (  )( )  

222 

(  )
( ) is defined 223 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  
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229 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 230 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

231 

(  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( ) 

232 

Behavior of the solutions 

 If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )  
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Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 
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( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and 
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( )     ( ̅ )

( )    and  respectively  ( ̅ )
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     and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )
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( )  (  )
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( ) (  )
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and analogously 

  (  )
( )  (  )
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( ) (  )
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( )     (  )
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( )      and (  )

( )  
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( )  (  )

( )    ( ̅ )
( )  (  )

( )    

Then the solution satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )   

(  )
( ) is defined 

236 
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Definition of (  )
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FROM GLOBAL EQUATIONS WE OBTAIN:  
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 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
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 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 
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 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

246 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

247 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

248 

From GLOBAL EQUATIONS we obtain  249 
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  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

250 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

251 

From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

252 

    In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

253 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 254 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

255 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

256 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

257 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

258 

 

259 

 Now, using this result and replacing it in CONCATENATED GLOBAL EQUATIONS we get easily the 

result stated in the theorem. 

 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

260 



Advances in Physics Theories and Applications                                                                                                                 www.iiste.org 

ISSN 2224-719X (Paper)  ISSN 2225-0638 (Online) 

Vol 6, 2012  

 

89 
 

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

FROM GLOBAL EQUATIONS WE OBTAIN:  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

261 

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

262 

 From which one obtains  

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 

263 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

Definition of ( ̅ )
( ) :- 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

264 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

    (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

265 

 

 

266 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

267 
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  Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined by equation 25 are satisfied , then the system 

268 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions  269 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      270 

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     271 

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  272 

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  are satisfied , then the system 

273 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  are satisfied , then the system 

274 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        275 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        276 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        277 

(   )
( )     (   

 )( )  (   
  )( )( )          278 

(   )
( )     (   

 )( )  (   
  )( )( )          279 

(   )
( )     (   

 )( )  (   
  )( )( )          280 

has a unique positive solution , which is an equilibrium solution for the system   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        281 
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(   )
( )    [(   

 )( )  (   
  )( )(   )]        282 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        283 

(   )
( )     (   

 )( )  (   
  )( )(   )          284 

(   )
( )     (   

 )( )  (   
  )( )(   )          285 

(   )
( )     (   

 )( )  (   
  )( )(   )          286 

has a unique positive solution , which is an equilibrium solution for   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        287 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        288 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        289 

(   )
( )     (   

 )( )  (   
  )( )(   )          290 

(   )
( )     (   

 )( )  (   
  )( )(   )          291 

(   )
( )     (   

 )( )  (   
  )( )(   )          292 

has a unique positive solution , which is an equilibrium solution for   

Proof:  

(a) Indeed the first two equations have a nontrivial solution          if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

293 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

294 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

295 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

296 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

297 

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 
298 

Definition  and uniqueness of    
   :-   299 
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After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

(b) By the same argument, the equations (SOLUTIONAL) admit solutions         if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( )     

 Where in  (           )         must be replaced by their values. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

300 

(c) By the same argument, the equations (SOLUTIONAL)  admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

301 

Where in (   )(           )         must be replaced by their values. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

302 

(d) By the same argument, the equations(SOLUTIONAL) admit solutions         if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in    (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

303 

Finally we obtain the unique solution  

   
            (  )    ,    

            (   
 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(  )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )(  )]
 

Obviously, these values represent an equilibrium solution 

304 

Finally we obtain the unique solution   

   
            ((   )

 )    ,    
            (   

 )    and 305 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     
306 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

307 

Obviously, these values represent an equilibrium solution   

Finally we obtain the unique solution  

   
            ((   )

 )    ,    
            (   

 )    and 

308 
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(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

      ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

 

Obviously, these values represent an equilibrium solution  

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions 

(  
  )( )     (  

  )( )  Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

                           
             ,      

     

                      
 (   

  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
(    )       

309 

 

Then taking into account equations (GLOBAL)and neglecting the terms of power 2, we obtain   

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      310 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      311 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      312 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      313 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      314 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      315 

 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stable 

 

Denote 

Definition of       :- 

316 

     
             ,      

     317 

 (   
  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
( (   )

  )       
318 

taking into account equations(GLOBAL) and neglecting the terms of power 2, we obtain   

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      319 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      320 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      321 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      322 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      323 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      324 

 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stable 

325 
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 Denote 

Definition of       :- 

                           
             ,      

     

                      
 (   

  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
( (   )

  )       

 

326 

 

Then taking into account equations (GLOBAL AND CONCATENATED) and neglecting the terms of 

power 2, we obtain 

 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      327 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      328 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

      329 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      330 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      331 

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
      332 

The characteristic equation of this system is  

(( )( )  (   
 )( )  (   )

( )) (( )( )  (   
 )( )  (   )

( )) 

[((( )( )  (   
 )( )  (   )

( ))(   )
( )   

  (   )
( )(   )

( )   
 )] 

((( )( )  (   
 )( )  (   )

( )) (  ) (  )   
   (   )

( ) (  ) (  )   
 ) 

 ((( )( )  (   
 )( )  (   )

( ))(   )
( )   

  (   )
( )(   )

( )   
 )  

((( )( )  (   
 )( )  (   )

( )) (  ) (  )   
  (   )

( ) (  ) (  )   
 )  

((( )( ))
 
 ( (   

 )( )  (   
 )( )  (   )

( )  (   )
( )) ( )( ))  

((( )( ))
 
 ( (   

 )( )  (   
 )( )  (   )

( )  (   )
( )) ( )( ))  

 ((( )( ))
 
 ( (   

 )( )  (   
 )( )  (   )

( )  (   )
( )) ( )( )) (   )

( )     

  (( )( )  (   
 )( )  (   )

( )) ((   )
( )(   )

( )   
  (   )

( )(   )
( )(   )

( )   
 )  

((( )( )  (   
 )( )  (   )

( )) (  ) (  )   
   (   )

( ) (  ) (  )   
 )     

+ 

(( )( )  (   
 )( )  (   )

( )) (( )( )  (   
 )( )  (   )

( ))  

[((( )( )  (   
 )( )  (   )

( ))(   )
( )   

  (   )
( )(   )

( )   
 )]  

((( )( )  (   
 )( )  (   )

( )) (  ) (  )   
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and 

this proves the theorem. 
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