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Abstract 

In this paper, the authors investigated some microphysical and optical properties of arctic aerosols extracted from 

the data base Optical Properties of Aerosols and Clouds(OPAC) to determine the effect of hygroscopic growth at 

the spectral range of 0.25μm to 2.5μm and eight relative humilities (RHs) (0, 50, 70, 80, 90, 95, 98, and 

99%).The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio 

as a function of RH while the optical properties are scattering and absorption coefficients and asymmetric 

parameters. Using the microphysical properties, effective growth factors of the mixtures were determined while 

using optical properties enhancement parameters were determined and then parameterized using some models. 

We observed that the data fitted the models very well. The angstrom coefficients which determined the type of 

particles size distribution increases with the increase in RHs except at the delinquent point where it decreases 

with the increase in RHs. The mixture was determined to have bimodal type of distribution with the dominance of 

fine mode particles but non-spherical. 

Keywords: microphysical properties, optical properties, hygroscopic growth, enhancement parameters, models, 

parametrisation. 

 

1 Introduction 

The Arctic is a polar region located at the northernmost part of the Earth which is a unique area among Earth's 

ecosystems. The Arctic region consists of a vast, ice-covered ocean, surrounded by treeless permafrost.  

The aerosol hygroscopic properties are very crucial for the understanding of the aerosol effects on climate via 

their effects on clouds. The hygroscopic growth measured at sub saturation is closely related to the ability of 

aerosol particles to activate and form cloud droplets (Swietlicki et al., 2008; Rissler et al., 2010). 

Generally, hygroscopic solutes grow significantly in size at high RH due to water uptake, and hence influence 

the aerosol optical and microphysical properties as well as their physical and chemical characteristics (Cheng et 

al., 2008; Topping et al., 2005a, b). Recently, several single-parameter schemes have been proposed to simplify 

the Kohler equation (Kohler, 1936). Hygroscopicity parameter, κ and ions density, ρion have been defined as 

proxies of chemical composition to represent aerosol hygroscopic growth as well as the ability of aerosol 

particles to become cloud condensation nuclei (CCN) (Petters and Kreidenweis, 2007; Wex et al., 2007). 

Virtually every property of atmospheric aerosols is a strong function of Relative Humidity (RH). Changes in 

particle size and phase with relative humidity modify heterogeneous atmospheric chemistry, cloud and fog 

formation processes, and visibility. As climate models improve, they must incorporate the dependence of aerosol 

radiative effects on RH. Because of the important role that water vapor plays in determining aerosol effects it is 

critical to develop the understanding that is required to reliably represent water vapor-particle interactions in 

models. With increasing RH particles containing hygroscopic salts and acids grow and become solution droplets, 

whereas particles composed of soot, or dust particles materials may not grow significantly with increasing RH. 
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mailto:gsmgalad@gmail.com
http://en.wikipedia.org/wiki/Polar_region
http://en.wikipedia.org/wiki/Earth
http://en.wikipedia.org/wiki/Sea_ice
http://en.wikipedia.org/wiki/Permafrost


Advances in Physics Theories and Applications                                                                                www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.36, 2014         

  

2 

The main parameter used to characterize the hygroscopicity of the aerosol particles is the aerosol hygroscopic 

growth factor gf(RH), which is defined as the ratio of the particle diameter at any RH to the particle diameter at 

RH = 0 % (Kammermann et al., 2010; Swietlicki et al., 2008). 

Changes in the aerosol optical properties resulting from the particle hygroscopic growth are described by 

enhancement factors f(,RH), which, for each optical parameter χ(,RH), are defined as the ratio between its 

values determined in any conditions χ (,RH) and those determined in dry conditions χ(,RH = 0%). 

The aim of this study is to determine the effect of RH and wavelength on the globally averaged direct aerosol for 

arctic aerosols from the datat extracted from OPAC. One or two variables parameterizations models will be 

perform to determine the relationship of the particles’ hygroscopic growth and enhancement parameters with the 

RH. Angstrom coefficients are used to determine the particles’ type and the changes in the mode size and type 

distribution as a result of the changes in RHs.  

 

2 METHODOLOGY 

The models extracted from OPAC are given in table 1. 

Table 1: The microphysical properties of the aerosols at 0% RH (Hess et al., 1998). 

Components No.Conc.(cm
-3

) Rmin,(m): Rmax, (m): sigma: Rmod, (m): 

Inso 0.0100  0.0050  20.0000  2.5100  0.4710  

Waso 1,300.0000  0.0050  20.0000  2.2400  0.0212  

Soot 5,300.0000  0.0050  20.0000  2.0000  0.0118  

Ssam 1.9000  0.0050  20.0000  2.0300  0.2090  

The aerosol’s hygroscopic growth factor gf(RH), (Swietlicki et al. , 2008; Randles, et al., 2004) is defined as: 

          (1) 

where RH is taken for seven values 50%, 70%, 80%, 90%, 95%, 98% and 99%.  

But since atmospheric aerosols consist of more and less hygroscopic sub fractions so the information on the 

hygroscopicity modes was merged into an “over-all” or “bulk” hygroscopic growth factor of the mixture, 

gfmix(RH), representative for the entire particle population as: 

       (2) 

The effective or volume equivalent radius of the mixture was determined using the relation 

           (3) 

where the summation is performed over all compounds present in the particles and xk represent their respective 

volume fractions, using the Zdanovskii-Stokes-Robinson relation (ZSR relation; Sjogren et al., 2007; Stokes and 

Robinson, 1966; Meyer et al., 2009; Stock et al., 2011). Solute-solute interactions are neglected in this model and 
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volume additivity is also assumed. The model assumes spherical particles, ideal mixing (i.e. no volume change 

upon mixing) and independent water uptake of the organic and inorganic components. 

Equation (5) was also be computed using the xk as the corresponding number fractions (Duplissy et al., 2011; 

Meier et al., 2009). 

We now proposed the xk to represent the mass mix ratio of the individual particles. The RH dependence of 

gfmix(RH) can be parameterized in a good approximation by a one-parameter equation, proposed e.g. by Petters 

and Kreidenweis(2007) as: 

       (4) 

Here, aw is the water activity, which can be replaced by the relative humidity RH, if the Kelvin effect is 

negligible, as for particles with sizes more relevant for light scattering and absorption. The coefficient κ is a 

simple measure of the particle’s hygroscopicity and captures all solute properties (Raoult effect), that is, it is for 

the ensemble of the particle which can be defined in terms of the sum of its components. In an ensemble of 

aerosol particles, the hygroscopicity of each particle can be described by an “effective” hygroscopicity parameter 

κ (Petters and Kreidenweis, 2007). Here “effective” means that the parameter accounts not only for the reduction 

of water activity by the solute but also for surface tension effects (Rose et al., 2008; Gunthe et al., 2009; Poschl 

et al., 2009).  It also scales the volume of water associated with a unit volume of dry particle (Petters and 

Kreidenweis, 2007) and depends on the molar volume and the activity coefficients of the dissolved compounds 

(Christensen  and Petters, 2012). The κ value derived for a particle of a given composition may vary, depending 

upon the size molar mass, the activity and RH it is derived at. 

For atmospheric aerosols, the range of κ typically varies from as low as ∼0.01 for some combustion aerosol 

particles up to ∼1 for sea-salt particles (Petters and Kreidenweis, 2007; Petters et al., 2009a). 

The following sub-divisions at 85% RH were made by Liu et al., 2011 and Swietlicki et al., (2008); as: 

nearly-hydrophobic particles (NH): <=0.10 (gfmix<=1.21), less-hygroscopic particles (LH): =0.10 – 0.20 (gfmix 

=1.21 – 1.37); more-hygroscopic particles (MH): >0.20 (gfmix >1.37). 

Making  κ as the subject of the equation (4), we get 

        (5) 

Humidograms of the ambient aerosols obtained in various atmospheric conditions showed that gfmix(RH) could 

as well be fitted well with a γ-law (Swietlicki et al., 2008; Birmili et al., 2004; Kasten, 1969; Gysel et al., 2009;  

Putaud, 2012) as 

        (6) 

Making  as the subject of equation (6) we get 

          (7) 

The bulk hygroscopicity factor B under subsaturation RH conditions was determined using the relation: 
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       (8) 

where aw is the water activity, which can be replaced by the RH as explained before. 

The impact of hygroscopic growth on the optical properties of aerosols is usually described by the enhancement 

factor : 

         (9) 

where in our study RHref was 0%, and RH was taken for seven values of 50%, 70%, 80%, 90%, 95%, 98% and 

99%. 

In general the relationship between  and RH is nonlinear (e.g. Jeong et al. 2007). In this paper we 

determine the empirical relations between the enhancement parameter and RH (Doherty et. al., 2005) as: 

     (10) 

The  known as the humidification factor represents the dependence of aerosol optical properties on RH, which 

results from the changes in the particles sizes and refractive indices upon humidification. The use of  has the 

advantage of describing the hygroscopic behavior of aerosols in a linear manner over a broad range of RH values; 

it also implies that particles are deliquesced (Quinn et al., 2005), a reasonable assumption for this data set due to 

the high ambient relative humidity during the field study. The  parameter is dimensionless, and it increases with 

increasing particle water uptake.  

Making  as the subject of equation(10) and , we get 

       (11) 

From previous studies, typical values of γ for ambient aerosol ranged between 0.1 and 1.5 (Gasso et. al., 2000; 

Quinn et al., 2005; Clarke et al., 2007). Two parameters empirical relation was also used (Jeong et. al., 2007; 

Hanel, (1976)) as; 

        (12) 

Equations (12) and (14) are verified at wavelengths 0.25, 0.45, 0.55, 0.70, 1.25, and 2.50µm. 

To determine the effect of particles distributions as a result of change in RH and soots,the Angstrom exponent 

was determined using the spectral behavior of the aerosol optical depth, with the wavelength of light (λ) was 

expressed as inverse power law (Angstrom, 1961):  

         (13) 

The Angstrom exponent was obtained as a coefficient of the following regression, 
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      (14) 

However equation (14) was determined as non-linear ( that is the Angstrom exponent itself varies with 

wavelength), and a more precise empirical relationship between the optical depth and wavelength was obtained 

with a second-order polynomial (King and Byrne, 1976; Eck et al., 1999; Eck. et al., 2001a, b,; Kaufman, 

1993;O’Neill et al., 2001a, 2003; Pedros et al, 2003; Kaskaoutis and Kambezidis, 2006; Schmid et al., 2003; 

Martinez-Lozano et al., 2001) as:  

ln(λ)=α2(lnλ)
2
 + α1lnλ + lnβ         (15) 

then we proposed the cubic relation to determine the type of mode distribution as:  

lnX(λ)= lnβ + α1lnλ + α2(lnλ)
2
+ α3(lnλ)

3
      (16) 

 where β, α, α1, α2, α3 are constants that were determined using regression analysis with SPSS16.0. for 

wondows. 

We also determined the exponential dependence of the aerosol optical thickness on relative humidity as done by 

Jeong et al. (2007) as; 

       (17) 

where A and B are constants determined using regression analysis with SPSS 16.0. Equation (17) was computed 

at wavelengths 0.25, 1.25 and 2.50m. 

We finally determine the effect of hygroscopic growth and change in the change in the concentration of soot on 

the effective refractive indices of the mixed aerosols using the following formula (Aspens, 1982): 

         (18) 

where fi and εi are the volume fraction and dielectric constant of the i
th

 component and ε0 is the dielectric 

constant of the host material.  

The relation between dielectrics and refractive indices is 

           (19) 

For the case of Lorentz-Lorentz (Lorentz, 1880; Lorentz, 1880), the host material is taken to be vacuum, ε0 =1. 

We then proposed the fi to be mass mix ratio and number mix ratio, to determine the advantage of one over the 

other. 

The volume-mixing rule calculates the effective refractive index (m) of a mixture as the sum of the refractive 

index (mj) of each component j weighted by its corresponding volume fraction (Vj), (Heller, 1945) as , 

           (20) 

This mixing rule is used in the several widely employed databases of aerosol optical properties (Wang and 

Martin (2007); Shettle and Fenn, 1979; d’Almeida et al., 1991; Hess et al., 1998). 

The computation of equations (18), (19) and (20) were done using the complex functions of Microsoft Excel 

2010. 
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3 Results and Discussions 

Table 2: the table of growth factors of the mixtures effective radii, bulk hygroscopicity, hygroscopicity and , of 

the aerosols using number mix ratio. 

RH(%) 0 50 70 80 90 95 98 99 

gfmix(RH) 
1.0000 

1.0554 1.0866 1.1179 1.1882 1.2851 1.4499 1.5848 

Reff 0.0182 0.0252 0.0278 0.0303 0.0356 0.0427 0.0555 0.0680 

B   0.1218 0.1009 0.0886 0.0714 0.0576 0.0414 0.0300 

    0.1757 0.1212 0.0993 0.0753 0.0591 0.0418 0.0301 

   -0.0778 -0.0690 -0.0693 -0.0749 -0.0837 -0.0950 -0.1000 

From Table 2, it can be observe that gfmix(RH) and Reff increase with the increase in RH, B and  decrease with 

the increase in RH while  fluctuates with the increase in RH. 

 

The results of the parameterizations by one parameter of equations (4) and (6) using number mix ratios are: 

=0.0336, R2= 0.9478 (from equation (4)) 

𝛾= -0.0911, R2= 0.9875 (from equation( 6)) 

From the observations R
2
, it can be seen that the data fitted the equations very well.  

 

Table 3:The ttable of growth factors of the mixtures effective radii, bulk hygroscopicity, hygroscopicity and , of 

the aerosols using volume mix ratio. 

RH(%) 0 50 70 80 90 95 98 99 

gfmix(RH) 
1.0000 

1.4542 1.6385 1.8074 2.1699 2.6565 3.5491 4.4463 

Reff 0.2075 0.2867 0.3232 0.3574 0.4331 0.5360 0.7262 0.9173 

B   1.4384 1.2122 1.0943 0.9711 0.9103 0.8830 0.8734 

    2.0752 1.4566 1.2260 1.0241 0.9340 0.8920 0.8778 

   -0.5402 -0.4101 -0.3678 -0.3364 -0.3261 -0.3238 -0.3240 

From Table 3, it can be observe that gfmix(RH) and Reff increase with the increase in RH, B and  decrease with 

the increase in RH while  fluctuates with the increase in RH. 

 

The results of the parameterizations by one parameter of equations (4) and (6) using volume mix ratio are: 

k=0.8838, R2= 0.9992 (from equation (4)) 

𝛾=-0.3316, R2=0.9940 (from equation (6)) 

From the observations of R
2
, it can be seen that the data fitted the equations very well.  
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Table 4: the Table of growth factors, of the mixtures effective radii, bulk hygroscopicity, hygroscopicity and , of 

the aerosols using mass mix ratio. 

RH(%) 0 50 70 80 90 95 98 99 

gfmix(RH) 
1.0000 

1.4480 1.6281 1.7947 2.1560 2.6423 3.5359 4.4340 

Reff 0.2164 0.2887 0.3226 0.3554 0.4300 0.5325 0.7229 0.9144 

B   1.4115 1.1826 1.0668 0.9506 0.8950 0.8729 0.8661 

    2.0363 1.4210 1.1952 1.0025 0.9183 0.8818 0.8704 

   -0.5341 -0.4048 -0.3634 -0.3337 -0.3243 -0.3228 -0.3234 

From Table 4, it can be observe that gfmix(RH) and Reff increase with the increase in RH, B and  decrease with 

the increase in RH while  fluctuates with the increase in RH. 

The results of the parameterizations by one parameter of equations (4) and (6) are: 

k= 0.8755, R2= 0.9993 (from equation (4)) 

𝛾= -0.3302, R2= 0.9945 (from equation (6)) 

 

From the observations of R
2
, it can be seen that the data fitted the equations very well.  
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Figure 1. A graph of Hygrowthcopic Growth against Relative Humidity From the Data of Tables 2, 3 and 4. 

From figure 1, it can be observe that all the plots can satisfy power law, and the plots using volume and mass 

mix ratios have higher values compared to using number mix ratios. Though volume mix-ratio is the highest 

with only a slght increase of between 0.01 to 0.02 compared with mass mix-ratio. 
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Figure 2. A graph of Effective Radii  against Relative Humidity From the Data of Tables 2, 3 and 4. 

From Figure 2, it can be observe that all the plots can satisfy power law, and the plots using volume and mass 
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mix ratios have higher values compared to using number mix ratios. Though volume mix-ratio is the highest at 

higher RH of 95 t0 99 with with difference of around 0.01. 

 

50 55 60 65 70 75 80 85 90 95 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

 Number

 Volume

 Mass

B
u

lk
 H

y
g

r
o

w
th

c
o

p
ic

 G
r
o

w
th

Relative Humidity (%)  

Figure 3. A graph of Bulk Hygrowthcopic Growth against Relative Humidity From the Data of Tables 2, 3 and 4. 

From Figure 3, the plots can all satisfy power and linear relations with wavelengths, and the plot using volume is 

higher followed by mass with number being the least.  
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Figure 4. A graph of Hygroscopicity against Relative Humidity From the Data of Tables 2, 3 and 4. 

From Figure 4, the plots can all satisfy power and linear relations with wavelengths, and the plot using volume is 

higher followed by mass with number being the least.  
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Figure 5. A graph of  against Relative Humidity From the Data of Tables 2, 3 and 4. 

From Figure 5, it can be observe that all the plots can satisfy power law, and the plots using volume and mass 

mix ratios have higher values in magnitude compared to using number mix ratios, though volume is the highest 
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most especially at lower RHs. 
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Figure 6: A graph of optical depth against wavelengths 

From Figure 6, it can be observe that there is a slight increase in optical depth with the increase in RH at lower 

RH (0 to 80%) but at the delinquent point (90 to 99%) the increase is higher and in almost non-linear form. The 

behaviour of %RH with λ, shows higher values of optical depth at the near ultraviolet region, and this signifies 

the presence of fine particles due to the domonace of soot(see Table 1). But as the RH increases the presence of 

water solubles which are very hygroscopic and larger in size than soot continued to get dominance. Also as the 

RH increases, it shows that soot being smaller in size compared to water solubles  and also being 

non-hygroscopicare acting as cloud condensation nuclei with respect to the water solubles. 

The relation between optical depth and RHs using equation (17) are: 

At λ=0.25 μ, A= 0.9704, B= 0.8625, R
2
= 0.6059 

At λ=1.25 μ, A= 0.9274, B= 0.4306, R
2
= 0.4888   

At λ=2.50 μ, A= 0.8721, B= 0.3318, R
2
= 0.4098  

The relation between optical depth and RH shows decrease in R
2
 and the exponent B with the increase in 

wavelength, and this signifies the dominance of coarse particles.  

 

Table 5: The results of the Angstrom coefficients for optical depth using equations (14), (15) and (16) at the 

respective relative humidities using regression analysis with SPSS16 for windows. 

RH 

(%) 

Linear Quadratic Cubic 

R2  R2 α1 α2 R2 α1 α2 α3 

0 0.7506 0.0885 0.9430 -0.0580 0.0664 0.9805 -0.0251 0.0290 -0.0491 

50 0.8738 0.1352 0.9692 -0.1048 0.0663 0.9888 -0.0712 0.0279 -0.0503 

70 0.9007 0.1574 0.9761 -0.1264 0.0675 0.9904 -0.0935 0.0299 -0.0493 

80 0.9193 0.1781 0.9810 -0.1467 0.0684 0.9913 -0.1154 0.0327 -0.0468 

90 0.9462 0.2185 0.9875 -0.1874 0.0676 0.9926 -0.1606 0.0370 -0.0401 

95 0.9667 0.2618 0.9921 -0.2329 0.0629 0.9937 -0.2154 0.0429 -0.0262 

98 0.9832 0.3072 0.9951 -0.2842 0.0500 0.9951 -0.2849 0.0508 0.0011 

99 0.9888 0.3191 0.9955 -0.3013 0.0388 0.9964 -0.3174 0.0572 0.0241 
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From Table 5, it can be observe that the plot at 0% RH is very much less than 1, and this denotes the heavy 

dominance of coarse particles. But as the RH increases, since water soluble and sea salt accumulation are very 

hygroscopic despite being in small quantity they help in increasing the scattering with the increase in RH more at 

shorter wavelength and this is what caused the  to also increase with the increase in RH. From the quadratic 

part the sign of 2 (positive) signifies the dominance of coarse particles and its values increase with the increase 

in RH, until at the delinquent points (90 to 99%) when the curvature decreased with the increase in RH. The 

cubic part signifies mode distributions as bi-modal with the dominance of coarse particles. 
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Figure 7: A graph of enhancement parameter for optical depth against wavelengths  

From Figure 7, at lower RHs (50 to 80%), the enhancement is very small, this is in line with what can be 

observed most expecially in Tables 3 and 4. But as from 90 to 99% RH it can be observe that there ia a 

non-linear increase of the enhencement factor (Tables 3 and 4).  Its dependence on the wavelength shows that 

dominance of non-hygroscopic nature of the soot. 

The results of the fitted curves of equations (10) and (12) are presented as follows; 

For a single parameter using equation (10). 

At λ=0.25 μ, γ= 0.2159, R
2
= 0.9909 

At λ=0.45 μ, γ= 0.1980, R
2
= 0.9810  

At λ=0.55 μ, γ= 0.1872, R
2
= 0.9761  

At λ=0.70 μ, γ= 0.1716, R
2
= 0.9715  

At λ=1.25 μ, γ= 0.1347, R
2
= 0.9593 

At λ=2.50 μ, γ= 0.1013, R
2
= 0.9088  

For two parameters using equation (12). 

At λ=0.25 μ, a= 0.9161, b= -0.2433, R
2
= 0.9845 

At λ=0.45 μ, a= 0.8848, b= -0.2363, R
2
= 0.9741 

At λ=0.55 μ, a= 0.8788, b= -0.2277, R
2
= 0.9683 

At λ=0.70 μ, a= 0.8794, b= -0.2118, R
2
= 0.9623 

At λ=1.25 μ, a= 0.8864, b= -0.1725, R
2
= 0.9494 

At λ=2.50 μ, a= 0.8680, b= -0.1457, R
2
= 0.9122 

From both one and two parameters, it can be observe that the exponent decrease with the increase in wavelength. 

This is very much in agreement with what can be observe in Fig.7, that the relation between enhencement and RH 

is non-linear. The decrease in the exponent with the increase in wavelength reflects the increase in the dominance 

of non-hygroscopic particles. 
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Figure 8 a graph of  against wavelength using equation (11) 

From Figure 8, it can be observe that the humidification factor decreases with the increase in wavelengths. The plot 

of  at 50% RH is steeper. This shows the little concentration of fine particles. The decrease in the steepness 

occurred because of the increase in the hygroscopic growth due to the presence of water soluble and sea salt 

accumulation mode. 
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Figure 9: A graph of extinction coefficients against wavelengths 

From Figure 9, it can be observe that the plots are similar to the plots in Figure 6, although there are some slights 

differences at the plots of 0, 50 and 70. They all satisfy power law. The relation between extinction  and RHs 

using equation (17) are: 

At λ=0.25 μ, A= 0.0163, B= 1.6281, R
2
= 0.7139  

At λ=1.25 μ, A= 0.0027, B= 2.3644, R
2
= 0.7566  

At λ=2.50 μ, A= 0.0009, B= 2.8820, R
2
= 0.7397   

The decrease in A and increase in B with λ, shows the presence of fine particles that are responsible for more 

scattering at shorter wavelength, but shows the dominance of coarse particles because, soot despite bieng smaller 

but act as a cloud condensation nuclei. The relation between extinction coefficient and RH shows increase in the 

exponent and good values of R
2
. 
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Table 6: The results of the Angstrom coefficients for extinction coefficient using equations (14), (15) and (16) at 

the respective relative humidities using regression analysis with SPSS16 for windows. 

RH 

(%) 

Linear Quadratic Cubic 

R2 Α R2 α1 α2 R2 α1 α2 α3 

0 0.9951 1.1776 0.9995 -1.2309 -0.1161 0.9995 -1.2379 -0.1081 0.0105 

50 0.9942 0.9674 0.9980 -1.0078 -0.0880 0.9986 -0.9677 -0.1338 -0.0601 

70 0.9945 0.9166 0.9975 -0.9510 -0.0750 0.9982 -0.9098 -0.1220 -0.0616 

80 0.9949 0.8765 0.9973 -0.9059 -0.0639 0.9980 -0.8672 -0.1080 -0.0579 

90 0.9959 0.8035 0.9973 -0.8234 -0.0433 0.9977 -0.7964 -0.0742 -0.0404 

95 0.9970 0.7271 0.9975 -0.7387 -0.0252 0.9976 -0.7313 -0.0337 -0.0111 

98 0.9974 0.6241 0.9974 -0.6279 -0.0081 0.9979 -0.6507 0.0179 0.0341 

99 0.9964 0.5452 0.9964 -0.5449 0.0007 0.9985 -0.5867 0.0484 0.0625 

From Table 6, the values of  at 0% RH signifies the dominance of fine particles due to the dominance of soot 

because it has the highest number concentration as shown in Table 1. But as the RH increases the values continue 

to decrease, because of the presence of water soluble and sea salt accumulation mode that are very hygroscopic 

and soot as cloud condensation nuclei, which cause the size of the particles to increase with the increase in RH as 

shown in Table 2, 3 and 4. From the quadratic part, 2 continues to decrease in magnitude with the increase in 

RH, this also signifies increase in the dominance of more coarse particles with the increase in RH. The cubic part 

signifies mode distributions as bi-modal with the dominance of coarse particles. 
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Figure 10: A graph of enhancement parameter for extinction coefficients against wavelengths  

 

Figure 10, shows that the enhancement factors increase with the increase in RH and wavelengths. This shows the 

dominance of large and hygroscopic particles of water soluble and sea salt accumulation mode. 

The results of the fitted curves of equations (10) and (12) using the data from the plots of figure 10 are presented 

as follows; 

For a single parameter using equation (10). 

At λ=0.25 μ, γ= 0.4174, R
2
= 0.9990 

At λ=0.45 μ, γ= 0.4762, R
2
= 0.9989  

At λ=0.55 μ, γ= 0.5008, R
2
=  0.9986  

At λ=0.70 μ, γ= 0.5716, R
2
= 0.9715   

At λ=1.25 μ, γ= 0.6188, R
2
= 0.9955  

At λ=2.50 μ, γ= 0.7481, R
2
= 0.9972  
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For two parameters using equation (12). 

At λ=0.25 μ, a= 1.0519, b= -0.4015, R
2
= 0.9972 

At λ=0.45 μ, a= 1.0551, b= -0.4594, R
2
= 0.9963 

At λ=0.55 μ, a= 1.0753, b= -0.4781, R
2
= 0.9962 

At λ=0.70 μ, a= 1.1183, b= -0.4973, R
2
= 0.9964 

At λ=1.25 μ, a= 1.2645, b= -0.5453, R
2
= 0.9975 

At λ=2.50 μ, a= 1.2318, b= -0.6828, R
2
= 0.9969  

From both the one and two parameters, it can be observe that the humidification factor and the exponent b all 

increase in magnitude with the increase in wavelengths. This signifies the good hygroscopic behavior and the 

dominance of water soluble and sea salt accumulation mode particles. 
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Figure 11: a graph of  against wavelengths using equation  (11). 

Figure 11 shows that  for the extinction decreases with the increase in RH most especially at RHs of 50, 70, 80 and 

90, but the  at the delinquent points 95 to 99% RH, it can be observe that the difference is not much. 
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Figure 12: A graph of scattering coefficients against wavelengths 

Figures 12 shows that the plots are similar to the plots of Fig.9.  

http://www.iiste.org/


Advances in Physics Theories and Applications                                                                                www.iiste.org 

ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) 

Vol.36, 2014         

  

14 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0

5

10

15

20

25

30

35

40

45

50

 SCATENH50    SCATENH70

 SCATENH80    SCATENH90

 SCATENH95    SCATENH98

 SCATENH99

S
c
a

tt
e

ri
n

g
 E

n
h

e
n

c
e

m
e

n
t 

P
a

ra
m

e
te

rs

Wavelength(m)  

Figure 13: A graph of scattering enhancement against wavelengths 

Figure 13 shows similar behavior with figure 10. This shows that the presence of water soluble ans seesalt being 

very hygroscopic and soot acting as a cloud condensation nuclei, contributed to scattering and extintintion 

enhencement being higher at higher wavelength. 
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Figure 14: A graph of absorption coefficients against wavelengths 

Figure 14, shows that absorption coefficients  is independent of RH at the spectral wavelengths of 1.25 to 2.50 

m, there is an increase of the coefficient with RH most especially at higher values of wavelength and RH.. The 

changes are more noticeable at the delinquent point (95 to 99%) RH. Its dependence with the wavelength shows 

that the plot can satisfy power law most especially at lower RH and wavelength. Also as from 0.25 to 2.50 it can 

be seen that the power law decreases with the increase in RH and wavelength. 
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Figure 15: A graph of absorption enhancement against wavelengths 

Figure 15 shows that the enhancement for absorption is negligible at shorter wavelengths, but became more 
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noticeable with the increase in wavelengths and relative humidity. This signifies the dominance of coarse mode 

particles. 
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Figure 16: A graph of Asymmetric parameter against wavelengths 

Figure 16 shows that the asymmetric parameter increases with the increase in RH and is much more at larger 

wavelengths.  
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Figure 17: A graph of Single Scattering albedo against wavelengths 

Figure 17 shows that single scattering albedo increases with the increase in RH, and this shows that scattering 

increases more than absorption with the increase in RH. At 0% RH, there is more absorption at shorter 

wavelength and this is due to the dominance of soot. But as the RH increases the soot act as the cloud 

condensation nuclei, where most hygroscopic particles sticked to them, and this is what caused the decrease in 

the absorption. 
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Figure 18: A plot of real effective refractive indices against wavelength using equation 18. 
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Figure 18 shows that the effective refractive indices decrease with the increase in RH. At 0% RH it can be seen 

that the effective refractive indices are higher. This is due to the dominance of soot particles that have higher 

number concentration and real refractive indices. As the RH increases, the water having lower refractive indices 

continue to decrease the refractive indices as the RH increased. Its behavior with wavelengths (i.e. not being 

constant) shows the dominance of non-spherical particles. 
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Figure 19: A plot of imaginary effective refractive indices against wavelength using equation 18. 

Figure 19 shows decrease in the effective imaginery refractive indices with the increase in RH. The behavior of 

the plots being almost straight line with the increase in RH and wavelength shows the possibility of the mixture 

to be internally mixed and this can be attributed to the increase in the dominance of water solubles and sea-salt 

that are acting as a cloud condensation nuclei. 
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Figure 20: A plot of real effective refractive indices against wavelength using equation 20. 

Figure 20 shows that the plots are similar to those of figure 18. 
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Figure 21: A plot of imaginary effective refractive indices against wavelength using equation 20. 
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Figure 21 shows by observation that the plots are similar to those of figure 19. 

 

4. Conclusion 

From the behavior of the parameters observed from Tables 2, 3 and 4 and Figures 1, 2, 3, 4 and 5 thay show that 

volume amd mass mix ratios are more important in describing some microphysical properties of mixtures 

airosols with respect to RHs.  

From optical properties it can be concluded that increase in effective radii and hygroscopic growth of the mixture 

reveal an immense potential of light scattering enhencement. 

From the gfmix(RH) observed, it is assumed that the high number fraction of non-sea salt sulphate particles (NSS) 

is responsible for its high value. 

It shows that volume and mass mix ratios can be more important in describing the hygroscopic and the Bulk 

Hygroscopicity factor (B) 

It shows that increase in RH increases forward scattering because particle growth enhances forward diffraction 

(Liou, 2002) for smaller particles while in larger particles it causes increase in the backward scattering. It also 

shows that the mixture is internally mixed for smaller particles because of the increase in forward scattering as a 

result of the hygroscopic growth (Wang and Martin, 2007). The behavior of internal mixing can be attributed to 

the dominance of water soluble. 

The relative importance of the humidity dependences of particle size and index of refraction on the aerosol 

scattering coefficient for a given substance depends on RH and on the sizes of the particles that provide the 

dominant contribution to the scattering. 

These hygroscopic growth behaviors also reveal an immense potential of light scattering enhancement in the 

forward direction at high humidity and the potential for being highly effective cloud condensation nuclei. 

It finally shows that marine aerosols are dominated by non-spherical particles. 

Finally, the data fitted our models very and can be used to extrapolate the hygroscopic growth and enhancements 

parameters at any RH. 

The importance of determining gfmix(RH) as a function of RH and volume fractions, mass fractions and number 

fractions, and enhancement parameters as a function of RH and wavelengths can be potentially important 

because it can be used for efficiently representing aerosols-water interactions in global models. 

The refractive index is highly variable depending on the chemical compositions of aerosols (d’Almeida et al., 

1991). 
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