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Abstract

Certain features of the works of Dyson (Am. J. PB3{1990) 209 ), Hojman and Shepley (J. Math. Phys
32(1991) 142), and, Hughes (Am.J. Phys. 60(1992))ldre integrated with our definition of the Poiss
bracket on a tangent bundle (velocity phase spaceajidress the Noether theorem inversion and sever
problem in the Newtonian mechanics from a noveivp@int without assuming apriori a Lagrangian or
Hamiltonian . From this standpoint we study thestice, uniqueness and form of the Lagrangian, and,
how to pass from conservation laws to Noether sytriese
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1. Introduction

From the earliest times philosophers and scierttist® tended to reduce the manifold phenomenatofena

to a minimum of laws and principles. In this spigynman way back in 1949 wanted to explore aslwide
as possible the Newtonian mechanics without asgymhiae existence of Lagrangian, canonical momenta
and Hamiltonian. Feynman’s work published by Dygbtinin 1990 has received worldwide attention in the
works of several authors such as Hojman and SHepl\Hughes [3],etc. In Reference [2], Feynman ’s
argument of avoiding the Lagrangian for a diffei@nsystem is shown to deal with the problem of the
existence of a Lagrangian itself. Particularly, iHajp and Shepley [2] demonstrate a close connection
between the Feynman assumptions and Helmholtz wonslji.e. , the necessary and sufficient condgio
under which a system of differential equations rbayderived from a variational principle. It is fuet
shown in Reference [4] that quantum mechanics isaneecessary ingredient of the Feynman procedure.
Hughes [4] has developed a version of the Feynnmranedure entirely within non-relativistic classical
mechanics on cotangent bundle (phase space ofinated and momenta ). The aim of present work is to
combine these features with our notion of a modiftersion of the standard Poisson bracket (se@jon

a manner which helps us to study a classical mechlasystem with n degrees of freedom without
assuming apriori existence of a Lagrangian or Hamian. As an application of this idea we consider
several issues bearing on the inverse problem imtdigan mechanics [9] in section 3 and the
correspondence between symmetries and conseratienimplied by Noether Theorem inversion [8] in
section 4 .

2 Poisson bracket on atangent bundle

The usual framework of Hamiltonian system is théaogent bundleT*M of an n-dimensional smooth
manifold M ( the configuration space). For a Lagian dynamical system (M,L) one considers the
associated tangent bundle TM (the velocity phasecesmf coordinates and velocities) and a smooth
function L : TM — R called Lagrangian . For a dynamical system witldegrees of freedom , let
(x) = x denote the local coordinates on M arf@’) = (x!,x%) = (x,x) denote the associated
coordinates on TM, where=i1,2,...n, 1=1,2,...,2.. Since evolution in symplectic mechanics is given
by a vector field ( called the Hamiltonian vectald ) it is of interest to consider the Lie algah(TM)

of vector fields on TM . For a classical mechanifcamulation which does not require apriori thae th
differential equations of motion follow from a vational principle we may proceed as follows.

Define a dynamical system by the flow system (,s1.,2n)

=51 (2.1)
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for the vector fieldS € y(TM) with

R B )
S = +xaxi+f(x'x't)axi (2.2)

and by the following Poisson bracket relations lestavpositions and velocitiesx
{(xL,x/}=0 (2.3)

x4, 27} = gY(x, %, t) (2.4)
We assume also that the mat(ig’/) is invertible , i.e.det(g”) # 0 . Such a dynamical system is called
regular . In this case denote fy;;) the inverse of g¥/ . Here the Poisson bracket {,} denotes an internal
binary operation o€ (TM), the ring of real- valued smooth functions on TMhe Poisson bracket
satisfies the following axioms :

PB1: {, }isreal bilinear and antisymmetric

PB2: Leibnitz Rule | :{f,gh} = {f,g}h + g{f, h}

PB3: Jacobiidentity ;/{f, g1, 9.} = {f, {91, 923} = {{f, 91}, 92} — {91, {f 923} = 0
PB 4 : Leibnitz Rule Il L,{g;, 92} = {Ls91, 92} + { g1, Lsg2}

Here L, denotes the Lie derivative with respect to themefield S. Restricting oneself to be on the flofv
S itis apparent that acting opeC*(TM) the Lie derivative yields the total time derivatiyi.e.L (@) =
@ . This is the reason why is also known as the on shell time derivative.

Let us apply Leibnitz rule Il to the bracket retats given above. Application of that rule to (Z3B)es

{x/, 21} = {x', 4/}
That is the matrix (g¥) is symmetric. Application of that rule to (2.4v¥gs on antisymmetrization
G} = =2 Y+ 500,
Lo guwd _ ot
2 (g w9 oF (2.5)

where the last result is a consquence of (2.3)Laitghitz rule | .
On setting aside the acceleration dependent temtiseoright hand side in (2.5) we may writg/ = g/'f)

AR A ik il 1 ik ag” ik agﬂ
&Ly = —g%g iy +5 (97" S — 9% N
wheret,; = %(%—% Consistency demands that
R ag]l R agil
gtkﬁz gﬂcﬁ (2.6)
whereupon  {x}, %/} = —gkglt), = —sY
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By Leibnitz rule I, {, } acts on each factor asexidation , whence we can prove that for any Poidgsacket
on TM , we have

. OF 0G

oF 06 . 9F G aG+{,i )
ox) XX G o

R Loy
oo T a5
whereupon we are led to the formula

. 0F
+ {x%, x’/}

{F! G} = {xi!xj} axl

JdF 0G aG 6F)_ ij OF 9G (27)

{F,G}zgij( _____ 9%l a%)

axtax)  axtax
For a Lagrangian system the evolution is giveremms of an energy functioh eC*(TM) such that
xt = {x}, h}
. i .
and Xt =aait+{5c’,h}

Some mathematical remarks are in order here. Téwblalentity also holds for any Poisson brackeTdh
This is the case if and only if the Jacobi identibfds for coordinate functions , i.e. if and oifly

Jxhxd, x®) = J(xtxd, %% = (a2, 1) = J(xL %, %%) =0

The first identity is trivial. The second one redsi¢e the validity of (2.6) . For a demonstratidntioe
remaining ones we refer the reader to our work {Ediffice it to add here that they can be showmetlice to
the following two identities

atl’j _ aW}k Owik

axk — dxi dxJ

oty Oty Oty
axk " oxt xS

The latter may be derived from the Helmholtz caodg (For a proof of these conditions from Leibmitle

Il for the system under considerations see Refer§@] ).

» Example

Consider the linear gyroscopic system

M+ Sx+ Vx=0

wherex e R™*, M is a positive definite symmetritxn matrix , S is a skewsymmetic matrix and V is a
symmetricnxn matrix. This system may by formulated on a 2rmatisional tangent bundle along the lines
given above by taking the canonical choice= M~! for the matrixg®/. This system is Lagrangian with the
energy function

h(x,x) = %x Mx +% x.V(x)

and the Poisson bracket ®" given by
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whose expression follows straightforwardly from7(2.

In this case it is easy to verify that the flowtsys given by x = {x,h} andx = {%, h} reproduces the
system under consideration .

3 Problemswith the Lagrangian formulation

In many instances Newton’s equations of motionlmaderived from the Euler Lagrange equations. Despi
the fact that the Lagrangian is very useful andveaient to compute with ,there seem to be somidifies
about the existence, uniqueness and form of Lagaangsed to define a given dynamical system. This
section will illustrate the so called inverse pehlof classical mechanics which is specificallyaamed
with the following issues .

1. Whether aLagrangian exists: As an illustration consider
X= -y and j= —y (3.1)
It is easy to prove in this case that there ismergy function h(x,%,y,y) on C®(R*) such that

x = {x,h} y=1{yh}
X ={x,h} ¥ ={y h}
Therefore the time evolution in this case cannagilken by a Hamiltonian vector field and the
above system of differential equations has na&magjan.
As atrial let{x,x} =1 and {x,y}=0
Repeated application of Leibnitz rule 1l giveslistcase
yy=xy}={yt={yr=0
thereby showing that the Poisson bracket of y Vesswith x, yx and y making it impossible to
satisfy y = {y, h} irrespective of our choice for h.

2. Whether Lagrangian isuniqueif it exists: It is possible to have a variety of Lagrangidmich
yield Euler - Lagrange equations that are equivatethe given system of differential equations.
* One dimensional example :

Let us consider X+px=0 p = constant) (3.2)

as an illustration of a dynamical system which ddnuf two inequivalent Lagrangians. With
g=g,=e P we have the energy function @ (R?)

2
X

h1 = ept_
2

so that the flow system x={x h}
= 4 (b} = —px+ (i hy} = —pi
agrees with (3.2). On the other hand , wjth= * we have the energy function @ (R?)

h, =x+ px
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which also leads to the flow systemx = {x,h,} X = {X, h,} in agreement with (3.2). With the
former choice the Larangian depends explicity oretiwhereas with the latter choice the Lagrangian
does not involve time explicitly.

» Two dimensional example :

Consider the equations of motion for a two dimenaidgsotropic oscillator

mx =—kx and my=-ky (3.3)

In this case it is easy to find two energy funcsiam C* (R*)

1 1
hy ==m (&2 +3'12)+Ek(x2 +y?)

2
hy=mxy+ Kxy

with the associated flow systems (i =1,2) bothlieg to (3.3)

x = {x, hi} y={hi}
X = {x, hi} y={h}
1
which correspond respectively to the canonical @hoig = g; =< /1m 1;) ) and , a
m

noncanonical choiceg = g, = < for the matrix g”) i=1,2 and j=1,2 defining the

0 1/m>
Ym0
given system. In other words we have two inequivial@grangians in this case.

3. What itsform iseven if the Lagrangian exists and is unique (upto the addition of a total time
derivative) : As an example consider the equations of motiontefcadimensional istropic
oscillator in polar coordinateg-, 6).

mit = —kr+mr0? and r%0+2ri6 = 0 (3.4)
The flow system on a 4 - dimensional tangent naoéahif
7 ={r,h} 6 ={6,h}
#={r,h} 6 =1{6,h}
generated by a Hamiltonian vector field associatitdl an energy function of the form
h= %m(r2 +7120%) + %kr2

m~1 0 )

0 (mr®»)?
To sum up we have considered here a somewhat uertioral viewpoint according to which equations of
motion is what really counts. We find that to addrénhe inverse problem in Newtonian mechanicsribis

leads to (3.4) . In this case the matlgy)(assumes the forng = g; = (

necessary to assume that the given equations abmnotan be derived from a variational principle.
Although the assumptions made by us may appeag tortmcuous , they are none-the-less strong entmugh
constrain the Newtonian mechanics into a viablerdiagian theory. A mathematically minded reader is

5
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urged to study Reference [5,10] for details.
4  From conservation lawsto symmetries

We have illustrated how a dynamical system maytdied classically by means of a formulation based
tangent bundle which bypasses the Lagrangian. Wietumm to the all important subject of conservatimns
which provide a powerful restriction on the behaviof a dynamical systen. The very well - known @y
obtain conservation laws for a system of differargiguations is Noether theorem which bring oupthwer
of symmetry in physics and associates to every sgtym conservation law.In this section we give & ne
method to solve the inverse problem , i.e., pas&age conservation laws to symmetries. The advantsg
this method is that it does not require, as doedlibether theorem, that the differential equatfotiew from
a variational principle.
Let C(x,X) be an observable which is conserved on the flba damiltonian vector field S . In Reference
[5,10] we found the explicit form of a vector fieE associated with C which is a symmetry of S, i.e
L,E = 0, with E=x24x2

a axt

xt

Xt ={x',C} and Xt ={x',¢C} (4.1)

J O gl g1 2 gl
Locally we have S axJE =F axJS
Since from our standpoint E generates a symmettheofilynamical system considered,we need to resolve
whether it is Noether or non Noether (A Noether syatry is one under which the Lagrangian considered
transformed into a total time defivative ; a noMNeether symmetry does not leave the action integral

invariant ). In this connection we recall that asyynmetry of a dynamical system formulated on aeahg
bundle with matrixg” = {x!,x/} determines a constant of the motion

®= —E(nD) + 2L +22

axt | oit

(4.2)

where E = ni% + ﬁi% is the symmetry generator andD = det(g").

This result was demonstrated in Reference [5] witlecourse to Lagrangian, although the same reanlt

also be demonstrated for a Lagrangian system (MpyLjnaking use of a conservation law deduced by
Hojman [3] and later generalized by Gonzalez- Gag6p; in the Lagrangian case D is the determirgdnt

2
the matrix which is reciprocal of the Hessi% . It is important to recall that for a Noether syetry ,

@ vanishes [7]. Thus the method is effectual in gatireg a constant of motion only if E generateoa-n
Noether symmetry of a dynamical system.
Returning to the present case the constant of motio

axicr  aicy

@ = —E(InD) + e JyL

(4.3)
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is found to vanish on using Jacobi identities §iatisby the Poisson bracket. This shows that tke@ated
symmetry is Noether.
To summarize the discussion of this section , gaweonstant of the motidd(x,x,t) for a dynamical system
¥= fi(x,x,t)
{x',x/} =0 {x', %7} = g!
thus formulated on a tangent bundle with magik(x, x, t) the variations
Sxt = ef{xt,C} Sxt = (&, C}

generate a Noether symmetry under which the Lagrangaries into a total time derivative . This Hessl
Noether theorem inversion. Our viewpoint may bestitated with the following example of a dynamical
symmetry.

» Three dimensional example

Consider the inverse square force with the equatidmotion

mix = kxx™3 = —grad kx™! (4.4)

This dynamical system may be formulated on a simedtisional tangent bundle witly = 15, a 3x3 unit
matrix. In this case it is well known that the kzerector
A=mx X (x Xx)+ kxx~1= Constant (4.5)

Taking the Poisson bracket af with x,x we arrive at the following variation of the coordigs (i =
1,2,3 and k fixed)

. . 1 1 ..
Ox' = 2me (f{lxk - —x'xk) — —x Xk
2 2
and of the associated velocities (i = 1,2,3 afiddd)

8x' = me(x'x* — %°6™ — km ™ 'x 186%™ + km™'x3x'x¥)
where x=¥| . For completeness , we may add that in this aaseple calculation yields the variation of the
familiar Lagrangian

. . o . d k
%mxz — kx~! into a total time derivative , viz-2kem (;) (X—) .
X
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