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ABSTRACT 

The aim of the present paper is to investigate the surface waves in a homogeneous, isotropic, visco-elastic solid 

medium of nth order, including time rate of strain under the influence of gravity and surface stresses. The theory 

of generalized surface waves is developed to investigate particular cases of waves such as the Stoneley, Rayleigh 

and Love waves. Corresponding equations have been obtained for different cases. These reduced to classical 

results, when the effects of gravity, surface stresses and viscosity are ignored. 
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1   INTRODUCTION 

 

The propagation of surface waves in elastic media is of considerable importance in earth-quake engineering and 

seismology due to the stratification in the earth’s crust. As a result, the theory of surface waves has been 

developed by Stoneley [1], Bullen [2], Ewing et al. [3], Hunters [4] and Jeffreys [5]. 

 

The effect of gravity on wave propagation in an elastic solid medium was first considered by Bromwich [6], who 

treated gravity as a type of body force. Love [7] extended the work of Bromwich [6] in investigating the 

influence of gravity on surface waves and showed that the Rayleigh wave velocity may be affected significantly 

by the gravity field. Sezawa [8] studied the dispersion of elastic waves propagated on curved surfaces. 

 

The transmission of elastic waves through a stratified solid medium was first studied by Thomson [9]. Haskell 

[10] examined the dispersion of surface waves in multilayered media. Biot [11] studied the influence of gravity 

on Rayleigh waves, assuming the force of gravity to create a type of initial stress of hydrostatic nature and the 

medium to be incompressible. De and Sengupta [12] examined several problems of elastic waves and vibrations 

under the influence of gravity field. In another work, Sengupta and Acharya [13] studied the influence of gravity 

on the propagation of waves in a thermoelastic layer. Brunelle [14], meanwhile, analysed surface wave 

propagation under initial tension or compression. Roy [15] studied wave propagation in a thin two-layered 

laminated medium with couple under initial stress, while Datta [16] studied the effect of gravity on Rayleigh 

wave propagation in a homogeneous, isotropic elastic solid medium. Goda [17] examined the effect of 

inhomogeneity and anisotropy on Stoneley waves. Abd-Alla and Ahmed [18] studied the Rayleigh waves in an 

orthotropic thermoelastic medium under gravity field and initial stress.  Bland [19], Flugge [20] and Voigt [21] all 

analysed the wave-propagation in viscoelastic media. Recently Sethi and Gupta [22] studied the surface waves in 

non-homogeneous, general visco-elastic media of higher order. 

 

Gurtin & Murdoch [23], Chandrasekharaiah [24] and other authors [25-28] all reported that surface stress plays a 

vital role in the propagation of waves due to the fact that the surface of a body exhibits properties that are quite 

different than those associated with the interior of the medium. In fact, surface tension which is generally 

accounted for in the theory of liquids may be considered as a particular case of surface stress. The presence of 

surface stress on the boundary of bodies has been detected in some particular type of crystals where its order of 

magnitude agrees with the predictions made by molecular theory [23]. Compressive surface stress is involved in 

the case of short peening of ductile metals [23], and its knowledge is quite useful for the shaping of aircraft wing 

panels  

 

A few problems on the propagation of plane waves in homogeneous and isotropic materials were considered 

[23]. Though the concept of surface stress is comparatively new, a few authors [24,25] investigated problems 
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which are based on the effect of surface stress. Pal et al [26], in particular, investigated the effect of surface stress 

on the propagation of surface waves. 

 

In the present paper, the problem of nth order visco-elastic surface waves involving time rates of strain in a 

homogeneous and isotropic medium under the influence of gravity, surface stresses, is studied. Biot’s theory of 

incremental deformations is used to obtain the wave velocity equation for Stoneley, Rayleigh and Love waves. 

These equations are in complete agreement with the corresponding classical results in the absence of gravity, 

surface stresses, and viscosity. 

 

2   FORMULATION OF THE PROBLEM 

 

Consider M1 and M2 to be two homogeneous, viscoelastic, isotropic, semi-infinite media welded in contact to 

prevent any relative motion or sliding before or after the occurrence of any disturbance. 

 

 
Figure 1   Two media, M1 and M2, in contact. 

Suppose that the media are separated by a plane horizontal boundary, which extends to an infinite large distance 

from the origin, M2 is taken to be above M1, and the mechanical properties of M1 are different from those of M2.  

As a reference co-ordinate system, we consider a set of orthogonal cartesian axes Oxyz, with the origin O being 

at an arbitrary point on the boundary, and Oz pointing outward normal to M1 (figure 1). Consider the possibility 

of a type of wave traveling in the positive x-direction,  in such a manner that the disturbance is largely confined 

to the neighborhood of the boundary and at any instant, all particles in any line parallel to Oy having equal 

displacement and all partial derivatives with respect to y are zero. These two assumptions suggest that the wave is 

a surface wave. 

 

Further let us assume that “u, v, w” are the components of displacements at any point (x, y, z) at any time t. It is 

also assume that gravitational field produces a hydrostatic initial stress is produced by a slow process of creep 

where the shearing stresses tend to become small or vanish after a long period of time. 

 

The equilibrium equation of the initial stress is in the form 

 



x
 = 0, 



z
 + g = 0. 

 

The dynamical equations of motion for a three-dimensional isotropic, visco-elastic solid medium (e.g. Biot’s 

[11]) are as follows: 
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where be the density of the material medium, g be the acceleration due to gravity and 
ij
 = 

ji
 are the stress 

components. 

 

The stress-strain relations for a general isotropic, visco-elastic medium are assumed to be given by the following:  
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The coefficients 
0
, 

0
, '

0
, '

0
, are constants and 

K
, 

K
 (K =1, 2..... n) are the parameters associated with Kth 

order visco-elasticity.  

 

Introducing equations (2) and (3) to Eqs. (1a), (1b), (1c), we obtain: 
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To investigate the propagation of a surface wave along the direction of Ox, we introduce the displacement 

potential (x, z, t) and (x, z, t), which are related to the displacement components as follows: 

 

u =






x z
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




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 .         (5) 

 

The displacement potential  and  in the above equation are two distinct “potentials”, whose Laplacians specify 

the dilatation and rotation given by: 
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These are associated with P-waves and SV-waves. 

 

Substituting equation (5) into equations (4a), (4b), (4c), we obtain: 
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Similar relations for medium M
2
 can be obtained by replacing 

K
, 

K
,  by '

K
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K
, '. 

 

 

3   SOLUTION OF THE PROBLEM 

 

Now our main objective is to solve equations (6a), (6b) and (6c). 

 

We seek a solution of the following form: 

 

(, , v) = [f (z), V (z), h (z)] ei(x–ct)       (8) 

 

Using equations (8) and (7) in equations (6a), (6b) and (6c), we obtain a set of differential equations for the 

medium M
1
 as follows: 
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Similar relations for medium M
2
 can be obtained by replacing respective terms with primes. 
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The governing equations for medium M
1
 and M

2
 must have exponential solutions such that f, V and h will 

describes surface waves. They must become vanishingly small as z . 

 

Hence for the medium M
1, the desired solutions are given by the following expressions: 

 

(x, z, t) =  Ae B ep z p z 1 2  ei(x–ct), 

 

(x, z, t) =  C e Dep z p z 1 2  ei(x–ct), 

 

v(x, z, t) = 
 1K z i x ct

E e
  

.         (11) 

 

Similarly for medium M
2
 ( for the region 0 z <-  ) they are given by expressions: 

 

'(x, z, t) =  zpzp
eBeA 21 ''
''   ei(x–ct), 

 

'(x, z, t) =  zpzp
eDeC 21 ''
''   ei(x–ct), 
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Likewise in equation (12) for finite disturbances as z  for medium M2 must hold    0Re ' ip  for i = 

1, 2, 3, 

 

where p
j
 (j = 1, 2) are the real roots of the equation 
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Similarly p'
j
 (j = 1, 2) are the real roots of the equation 

 

p'
4
+ '

1
 p'

2
 + '

2
 = 0,          (14) 

 

where '
1,
'

2,
 are obtained by replacing corresponding terms in equation (13) with primes.  

 

For the media M
1
 and M

2
 respectively, we take into considering the real roots of equation (13) and equation (14). 

The constants A, B and A', B' are related with C, D and C', D' in equations (11) and (12) by means of first 

equations in (9) and (10). 

 

Equating the co-efficients of 
zpzpzpzp

eeee 2121 ''
,,,


 to zero after substituting equations (11) and (12) in the 

first equations in (9) and (10) respectively, we obtain 

 

C = 
1
 A, D = 

2
 B, C' = '

1
A', D' = '

2
 B', 
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where 

 


j
 = 
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g J
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j

2
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j
' =

2

1g '
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4   BOUNDARY CONDITIONS 

 

We assume that the plane z = 0 is a material layer that adheres to its neighboring layer without slipping. The layer 

is capable of supporting its own stress represented by a surface stress tensor 

i

 that obeys the equation given 

by Chandrashekraiah [24], i.e., 

 , , ,[ { ( ) } ( ) ]i d d i d i

i

u u u    


                  for i, α, γ = 1,2, 

                    =    3,u                                                                               for i = 3.                           (16) 

Here λd, μd are the Lame’s moduli of the material boundary and σ is the residual surface tension on the layer z = 

0. The forces on the bounding surface are governed by surface stress tensor

i

 . The dimensions of λd, μd and σ 

are N/m. 

 

(i) The displacement components at the boundary surface between the media M
1
 and M

2
 must be continuous at 

all times and positions. 

 

i.e. [u, v, w] M
1
 = [u, v, w] M

2
 at z = 0 respectively. 
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





 = '
i3,   at z = 0, (u1= u, u2 = v, u3 = w). 

 

Here, 1 is the mass per unit area of the layer and 
ij
 and '

ij
 are the stress tensor in the interior of the medias M

1
 

and M
2. Dimensions of conventional stress tensor i3 are force per unit area and stress tensor 

,i 

 are force per 

unit length, and these further obeys the law given by Gurtin and Murdoch [23]:     

         

 
ij
 = D




ij
 uk,k + D


(ui,j + uj,i).  

 

The boundary conditions become: 
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Applying boundary conditions (17) to (11) and (12) the following system of equations is obtained, 
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where we have taken,  
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From equations (18b) and (18e), we have E = E' = 0. Thus there is no propagation of displacement v. Hence SH-

waves are decoupled in this case. 

 

Finally, eliminating the constants A, B, A', B' from equations (18a), (18c), (18d) and (18f), we obtain: 

 

det (a
ij
) = 0,  i, j = 1, 2, 3, 4,         (20) 
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where 

 

a
11

 = (i + 11
), a

12
 = (i +

2 2
), a

13
 = – (i –'

1
 '

1
), a

14
 = – (i – '

2
 '

2
), 

 

a
21

 = ( i
1
 – 

1
), a

22
 = ( i

2
 – 

2
), a

23
 = – ( i'

1
 + '

1
), a

24
 = – ( i'

2
 + '

2
), 

 

a
31

 =
K
*

[(2i
1
 + 

1
 + 

1

2
 

1
) +F ( i + 11

)], a
32

 = 
K
*

[(2i 
2
 + 

2
 + 

2

2
 

2
) + F  (i +

2 2
)], 

 

a
33

 = – ' *
K

(–2i '
1
 + '

1
 + 

1
'
2
 '

1
), a

34
 = –' *

K
(–2i '

2
 + '

2
 + 

2
'
2
 '

2
), 

 

a
41

 = 
K
*

[(2 – S
2
– 2i

1
 

1
) –H (i

1
 – 

1
)], a

42
 = 

K
*

[(2 – S
2
– 2i

2
 

2
) –H  (i

2
 – 

2
)],   

a
43

 = –' *
K

(2 – S'
2
 +2 i '

1
 '

1
), a

 44
 = –' *

K
(2 – S'

2
 +2 i '

2
 '

2
). 

 

Here equation (20) represents the wave velocity dispersion equation for interface waves in homogeneous, visco-

elastic solid media under the influence of gravity and surface stresses, where the viscosity is of general nth order 

involving time rates of change of strain. 

 

 

5   PARTICULAR CASES 

 

5.1 Stoneley Waves 

 

Stoneley waves are a generalized form of Rayleigh waves propagating along the common boundary of two semi-

infinite media M
1
 and M

2
. Therefore equation (20) determines the wave velocity equation for Stoneley waves in 

homogeneous, visco-elastic, solid media of nth order involving time rates of strain under the influence of gravity 

and surface stresses. 

 

Clearly from equation (20), It follows that wave velocity of the Stoneley waves depends upon the gravity, surface 

stresses and viscosity. 

 

Thus, after simplification, equation (20) reduces to: 

 


K
*


2
 (N1R2–N2R1)(Q1M2–Q2M1) + [

K
*

(FM1P2–HL1Q2) (N1R2–N2R1) + FM1' *
K

{P1' (M2R2– N2Q2) –P2' 

(M2R1-N1Q2)}+ 
K
*

(HL2Q1–FM2P1) (N1R2–N2R1)- FM1' *
K

{P1' (M1R2–N2Q1) –P2' (M1R1–N1Q1)}+ ' *
K

L1'{H 

Q1(M2R2– N2Q2) –HQ2(M1R2–N2Q1)}+ ' *
K

L2'{H Q2(M1R1– N1Q2) –HQ1(M1R1–N1Q1)}] + Δ(s) = 0, 

     (21) 

 

where 

 Δ(s) =
K
*

L1P2(N1R2–N2R1) + L1' *
K

{P1' (M2R2–N2Q2) –P2' (M2R1-N1Q2)} 

                       –
K
*

L2P1 (N1R2–N2R1) –L2' *
K

{P1' (M1R2–N2Q1) –P2' (M1R1–N1Q1)} 

  + ' *
K

L1'{P2 (M1R2–N2Q1) – P1 (M2R2– N2Q2) +

*

*

'
K

K




P2'(M1Q2–Q1M2)} 

  + ' *
K

L2'{P1 (M2R1–N1Q2) – P2 (M1R1– N1Q1) –

*

*

'
K

K




P1'(M1Q2–Q1M2)}, (22) 

 

and M1 = (i + 11
), M2 = (i +

2 2
), N1 = – (i –'

1
 '

1
), N2 = – (i – '

2
 '

2
), 
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Q1 = (i
1
 – 

1
), Q2 = ( i

2
 – 

2
), R1 = – ( i'

1
 + '

1
), R2 = – ( i'

2
 + '

2
), 

 

L1 = (2i
1
 + 

1
 + 

1

2
 

1
), L2= (2i 

2
 + 

2
 + 

2

2
 

2
), 

 

L1' = (–2i '
1
 + '

1
 + 

1
'
2
 '

1
), L2' = (–2i '

2
 + '

2
 + 

2
'
2
 '

2
), 

 

P1 = (2 – S
2
– 2i

1
 

1
), P2 = (2 – S

2
– 2i

2
 

2
),        

 

P1' = (2 – S'
2
 +2 i '

1
 '

1
), P2' = (2 – S'

2
 +2 i '

2
 '

2
). 

 

Due to the presence of wave number k in equation (21), it follows that Stoneley waves are dispersive in nature.   

 

In case of absence of gravity and surface stresses, we take λd, μd, σ and 1 are equal to 0. 

Then equation (21) reduces to, 

(1- R'T'){(2 – S
2
)

2
–4RT–4

*

*

'
K

K




(1– S

2
–RT)} + (1- RT){(2 – F

2
S

2 
)

2
–4 R'T' 

–4

*

*

'
K

K




(1– F

2
S

2
– R'T')}– F

2 
S

4 

'

0

0




(2+TR'+T'R) = 0,         (23)                

 where       

 

T
2
 = 1 – S

2
, R

2
 = (1 – E

2
S

2
), T'

2
 = (1 – F

2
S

2
), R'

2
 = (1 – J

2
S

2
), 

E
2
 =

 

 

2

0

2

0

n
K

KT

K

n
K

KS

K

U i c

U i c
















, F

2
 =

 

 

2

0

'2

0

n
K

KS

K

n
K

KS

K

U i c

U i c
















, J

2
 = 

 

 

2

0

'2

0

n
K

KS

K

n
K

KT

K

U i c

U i c
















. 

 

Thus, equation (23) represents the wave velocity equation of Stoneley waves in a homogeneous visco-elastic 

media which is completely in agreement with corresponding classical result. 

 

In case of absence of viscous field, then equation (23) reduces to, 

(1- R'S'){(2 – s
2
)

2
–4RS–4

'

0

0




(1– s

2
–RS)} + (1- RS){(2 – q

2
s

2 
)

2
–4 R'S'–4

'

0

0




(1– q

2
s

2
– R'S')} 

       – q
2
s

4

'

0

0




(2+SR'+S'R) = 0,        (24)                

 where      

 

s = c/b, S = (1 – s
2
)

1/2
, R = (1 – e

2
s

2
)

1/2
, S' = (1 – q

2
s

2
)

1/2
, R' = (1 – t

2
s

2
)

1/2
, 

e = b/a, q = b/b', t = b/a', a
2 
=

0 0

0

2 




, b

2 
=

0

0




, a'

2 
=

0 0

0

' 2 '

'

 




, b'

2 
=

0

0

'

'




. 

Thus, equation (24) represents the wave velocity equation of Stoneley waves in a elastic media which is 

completely in agreement with corresponding classical result. 

 

5.2 Rayleigh Waves 

 

To investigate the possibility of Rayleigh waves in a homogeneous, semi-infinite visco-elastic, media, we replace 

medium M
2
 by vacuum, in the proceeding problem.We also note that SH-wave  is decoupled in this case. 
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By applying the boundary conditions: 

 
13

 +

2

1 2
1 ,

u

t 







 = 
 


33

 +

2

1 2
3 ,

w

t 







 =           

 

Thus equations (18d) and (18f), reduced to: 

 

[(2i
1
 + 

1
 + 

1

2
 

1
) +F  ( i + 11

)] A + [(2i 
2
 + 

2
 + 

2

2
 

2
) + F  (i +

2 2
)] B = 0,    (26a)       

                               

[(2 – s
2
– 2i

1
 

1
) –H  (i

1
 – 

1
)] A + [(2 – s

2
– 2i

2
 

2
) –H  (i

2
 – 

2
)] B = 0.           (26b) 

 

Eliminating A and B from equations, (26a) and (26b), we obtain: 

 

[(2i
1
 + 

1
 + 

1

2
 

1
) +F  (i + 11

)] [(2 – S
2
– 2i

2
 

2
) –H  (i

2
 – 

2
)] 

 

– [(2i 
2
 + 

2
 + 

2

2
 

2
) + F  (i +

2 2
)] [(2 – S

2
– 2i

1
 

1
) –H  (i

1
 – 

1
)] = 0  (27) 

 

Here, equation (27) represents wave velocity equation for Rayleigh waves in a homogeneous, visco-elastic solid 

medium of nth order involving time rate of strain under the influence of gravity and surface stresses. Thus, from 

equation (27), we conclude that Rayleigh waves depends on the residual surface tension, surface stresses, 

viscosity and gravity. 

 

This equation, of course, is in complete agreement with the corresponding classical result, when the effects of 

viscosity, gravity and surface stresses are neglected. 

 

 

5.3 Love Waves 

 

To investigate the possibility of Love waves in a homogeneous, visco-elastic solid media, we restrict medium M
2
 

by two horizontal plane surface at a distance H-apart, while M
1
 remains infinite (figure 2). For medium M

1
, the 

displacement component “v”remains same as in general case given by equation (11). 

 

For the medium M
2
, we preserve the full solution, since the displacement component along y-axis (i.e., v) no 

longer diminishes with increasing distance from the boundary surface of two media. 

 

Thus, 

 

v' = 
   1 1- K'  K'

1 2

z i x ct z i x ct
E e E e

    
 .        (28) 

 

   

 
Figure 2   Configuration for Love waves.  
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In this case, the boundary conditions are given by: 

 

(i) vand 
32

 are continuous at z = 0, 

 

(ii) '
32

 = 0 at z = –H, 

 

where we have taken 

 
23

 +

2

1 2
2 ,

v

t 







 = 
 

 

Applying boundary conditions (i) and (ii) and using equations (11), (17) and equation (28), we obtain: 

 

E = E
1
 + E

2
,           (29) 

 

–K
1
 

K
*

 E = ' *
K

 [–K'
1
 E

1
 + K'

1
 E

2
],        (30) 

 

[' *
K

 K'
1
 +

2

1d c  ] 1'K He E
1
 – [' *

K
 K'

1
 

2

1( )d c   ] 1'

2

K He E
= 0.   (31) 

On eliminating the constant E, E
1
 and E

2
 from equations (29), (30) and (31), we obtain: 

tan (i K'
1
 H) = 

* * * 2

1 1 1 1

* 2 2 * 2

1 1 1

[  K ?  K ' ? K ' ( ? ]

[?  K ' ? K ( ? ]

dK K K

dK K

c
i

c

    

   

 


 
     (32) 

Thus equation (32) represents the wave velocity equation for Love waves in a homogeneous, visco-elastic solid 

medium of nth order involving time rates of strain under the influence of gravity and surface stresses. Clearly it 

depends upon the viscous field, μd, 1   and independent of gravity and residual surface tension σ. 

 

Further when surface stresses, gravity and effect of viscous field are ignored, this equation, of course, is in 

complete agreement with the corresponding classical result of Love. 

 

 

6   DISCUSSION AND CONCLUSIONS 

 

The present study reveals the effects of gravity, surface stresses, residual surface tension and viscous field, on the 

wave velocity equations corresponding to Stoneley waves, Rayleigh waves and Love waves. Further it is 

investigated that visco-elastic surface waves are affected by the time rates of strain parameters. These parameters 

influence the wave velocity to an extent depending on the corresponding constants characterizing the visco-

elastic behavior of the material. So the results of this analysis become useful in circumstances where these effects 

cannot be neglected. Some special cases of this study in homogeneous elastic medium are discussed by several 

authors, including Chandrasekharaiah [24], Gurtin and Murdoch [23, 27, 28]. 

 

The wave velocity equation for Rayleigh waves under the influence of gravity and surface stresses is dispersive 

due to the presence of wave number. It also depends on gravity, viscosity, residual surface tension and surface 

stresses. 

Our results are in complete agreement with the corresponding classical results when gravity, surface stresses and 

other effects are neglected. 

 

By contrast, Love waves do not depend on gravity, residual surface tension σ, these are only affected by such 

factors as viscous field, Lame moduli of material boundary and surface stresses. In the absence of surface stresses 

and other effects, the dispersion equation is in complete agreement with the corresponding classical result. 
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Further it is noted that the wave velocity equation of Stoneley waves is very similar to the corresponding problem 

in the classical theory of elasticity. Here we also observed the dispersion of waves due to the presence of wave 

number, gravity, surface stresses and visco-elastic nature of the solid. Moreover, the wave velocity equation of 

this generalized type of surface waves in homogeneous visco-elastic solid media of higher order under the 

influence of gravity and surface stresses is in complete agreement with the corresponding classical results when 

gravity, surface stresses and viscous field effects are neglected. 

 

Finally, the solution of wave velocity equation for Stoneley waves cannot be determined by easy analytical 

methods. One needs to apply numerical techniques to solve the relevant detrimental equation by choosing 

suitable values of physical constants for both media M
1
 and M

2
. 
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