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Abstract

This paper documents an overview on the currentledge of gene transfer in bacteria with emphagishe

role of horizontal gene transfein contrast to the numerous gaps in our undergigndf Bacterial gene
expression. Horizontal gene transfer is the gerextahange in bacteria that is different from a paodfspring

relationship. Horizontal gene transfer is the tfansf genetic material from unrelated taxa. Tlyiset of gene
transfer is important in bacteria because it trarssthe gene from another group of bacteria witly desistance,
virulence and pathogenicity genes to bacteria'sstwlacks these type of genes. Not all type of geméacteria
are equally likely to be transferred. genes taliag in replication, interpretation, and interptigta (educational
qualities) are less inclined to be on a level plarehanged than operational. Plasmids are thelairgenetic
materials in bacteria that encode the resistanoegyehat is important to bacterial virulence angl mostly

transferred from one bacterium to another. Bactasia different methods to transfer these typesotg from
one bacterium to another and horizontal gene tearcdn be affected by the mechanism of geneticsfiean
system of gene integration and by ecology. Theegfibis important to control the rapid horizongeine transfer
in bacteria.
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1. INTRODUCTION

Bacterial gene transfer is to transfer a gene foom DNA molecule to another DNA molecule by theizmmtal
and vertical way. Vertical gene (binary fissiongisimple process; a cell merely needs to growvicetits size
and then split in two (Esther, 2005). Horizontahgetransfer (HGT) is the phenomenon in which geneti
material is transmitted laterally between organismbetween genomes within organisms, rather tleatically
through sexual reproduction (Bock, 2010; Renner Belibt, 2012). This process can occur irrespectizéhe
relatedness of the organisms and occurs frequéethyeen prokaryotes and eukaryotes (Keeling anthétal
2008; Bock 2010).

It also refers to the movement of genetic matdrélveen organisms that do not follow the normahyat
of vertical transmission from parent to offspriniylgthot, 2016). Averyet al. (1944) demonstrated that
deoxyribonucleic acid (DNA) was the transformindstance and is known as a responsible moleculgeine
transfer. In 1952, Hershey and Chase demonstrdiat DNA was the main material exchanged amid
bacteriophage disease, which recommended that K iB the hereditary material. Level hereditary leecge
was then depicted in Seattle in 1951, in a papdiibéing that the exchange of a viral quality into
Corynebacterium diphtheria made a harmful stradmfia non-destructive (Di Rita, 2016). And this giyithe
first example for the relevance of the lysogeniclefis one of two cycles of viral reproduction ard
characterized by the integration of the bacterigghaucleic acid into the host bacterium's genome or
arrangements of a round replicon in the bacteyiglasm) (Racine and Valerie, 2014). Between badtgene,
an exchange was first portrayed in Japan in 1969 é¢xhibited the exchange of antimicrobial resista
between various types of microscopic organisms (&&tmhannes and Drasar, 1988).

As indicated by Riverat al, (2004) investigations of gene and genomes am@dstrating that impressive
level exchange has happened between prokaryotestéRet al., 2004).According to Riveeaal, (2004). The
wonder seems to have had some hugeness for utacedlukaryotes also. As Baptesteal (2005) watch, extra
proof proposes that gene transfer might also bienportant mechanism in bacterial evolution” (Bapdes al,
2005).

Flat gene move made conceivable in substantiallpattie presence of portable hereditary componéats,
example, plasmids (additional chromosomal heregitamaterial), transposons ("bouncing qualities")d an
microscopic organisms tainting infections (bactehi@ages). These mobile genetic elements transféorether
microorganisms by different mechanisms such asstoamation, conjugation, and transduction. All thre
methods have served as elegant tools in the dawelapof genetic methods for bacteria's and havegedla
major role in bacterial evolution and drug resise(Gyles and Boerlin, 2014).

In this time, molecular hereditary genetic and geacexamination gave broad confirmation that quality
misfortune and obtaining are probably going to he essential systems by which bacterial populations
hereditarily adjust to novel or changing environtseand by which bacterial populations diverge aonf
separate, evolutionary distinct species. Three egyst of gene exchange have been recognized in
microorganisms: transformation, conjugation, amghsduction, yet our insight concerning even quatitye in
the earth was still is extremely constrained. Gneatgut, specifically the rumen possibly suppoat fjene
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exchange with conjugation and transduction, becaokeexpansive, assorted and thick bacterial and
bacteriophage populaces, in any case, there isst¢hecity of reviewed documents regarding the rdle o
horizontal gene transfer in bacteria.
Therefore, the objectives of this Seminar Paper are

v" To review compiled information on the role of hanizal gene transfer in bacteria.

v' To discuss factors that affect (either favors odbis) horizontal gene transfer in bacteria.

v" To highlight the mechanisms of horizontal genegfanin bacteria

2. HORIZONTAL GENE TRANSFER IN BACTERIA

Level gene exchange (LGT) or horizontal gene exghafHGT) is the development of hereditary material
amongst unicellular and additionally multicellulde forms (Keeling, 2008; Robinson, 2013). It iettransfer

of DNA between organisms, which allows acquisitidmovel traits unique from those inherited. Theed of
large-scale genome sequencing has greatly improuedinderstanding of the importance of HGT, paldidy
among Eubacteria. For example, the phylogenetidysisaof 144 prokaryotic genomes has indicated, that
although most genetic information flows verticaljgnes are also frequently transferring horizoptadtween
closely related taxa and between bacteria inhapithe same environment (Beilet al, 2005). HGT in
Eubacteria has implicated in the acquisition andlion of many traits including antibiotic resistae,
pathogenesis, and bioremediation (Bouateal, 2003).

Schwartz and Dayhoff (1978) first addressed thdutiemary and phylogenetic importance of gene tiens
through it quickly dismissed as an irrelevant phmanon; lately, as gene sequences started to acaterand
the purity of genomes became more dubious. Da®l{{tl998, 1999) proposed HGT could be an important
process that may account for the current confoonadif the genomes and, in extreme cases, may Bctual
preclude us from reconstructing a "Universal Tréd.ite". This is of course debated and not all trerties
involved in the discussion agreed on the importasfcelGT in its evolutionary long-term effects. HGS an
important factor in the evolution of many organisi@yles and Boerlin, 2014) and plays an importate n the
evolution of bacteria that can degrade novel comgdswsuch as human-created pesticides (McGowan,) H9@i8
in the evolution, maintenance, and transmissionviofilence (Keen, 2012). It often involves temperate
bacteriophages and plasmids (Naik, 1994; Varg, pamd is the primary mechanism for the spread tibiatic
resistance in bacteria, (Kayal., 2002; Kooniretal., 2001).

The great amount of genomic information that betgaaccumulate during the decades of the 1980s and
1990s, made it possible to find an increasing nunolb@xamples of transferred genes either indiviiguar by
the group even between different kingdoms. Theee lwwever, several difficulties to positively de#téSuarez
Diaz and Anaya-Mufoz, 2008). Horizontal gene trans&n safely assumed if a gene shows a lowerasityil
with an orthologue in a closely related organismnthvith a probable homolog from an organism in stagiit
taxon, usually producing unexpected tree topolog&®ther signature of lateral gene transfer wheneg
synteny is conserved between distant lines (Kodt081 and Koonin 2002).

2.1. Horizontal Gene Transfersin Rumen

Bacteria are present in large populations'{Z@lls mi*) in the rumen fluid and they can find attachedte
substrate particles and the rumen wall extensive populace of bacteriophages saw imuthen liquid and few
examinations played out, the bacteriophages coatelihwith ruminal bacterial genomes likewise founbis
indicates necessary requirements for conjugati@hteamsduction are fulfilled. Natural transformaticon the
other hand, seems less likely, because of nucleagtivity of the ruminal fluid (Peterkat al.,2000). Although
these micro floras have importance on the supphotdtile fatty acid (Wanapatal., 2012), most members are
potential donors of various genes as done by SewitFlint in 1995 ork. coli. Bacteria’s from these strains
isolated from the rumen can successfully exchahge plasmids by conjugation in anaerobic condgidm a
medium that included whole rumen fluid. This pracesin continue on related and phylogeneticallyadist
bacteria’s inhabiting in the rumen (Scott and Flirg95).

According to Merceret al (1999), the predominant form of gene transferumen could function via
mobile chromosomal elements similar to those foumthe human coloniBacteroidesspecies (Merceet al,
1999). In this manner, horizontal gene exchangehegpen between species and additionally insidepalpce.
This can wind up tricky if harmful bacteria thatificially chose for anti-infection opposition hagp to be in the
colon, where bacteria can exchange the resistae tg different species of bacteria (Gerding, 1991

3. MECHANISMSTHAT FAVOR HORIZONTAL GENETIC EXCHANGE IN BACTERIA

Bacteria avail themselves by a variety of efficiemtchanisms for the transfer of advantageous genether
organisms and other species (Courvalin, 1994). Gdwerial genome consists of chromosomal DNA, which
encodes for general cellular characteristics anthibadic repair pathways, and smaller circular DNAngents
known as plasmids that encode for supplementaleliattactivities such as virulence factors andstesice
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genes. However, the presence of transposons mpadssible to exchange genes from chromosome asdijla

in either direction by simple recombination. Tramspns are small, mobile DNA elements capable ofiatied
transfer of DNA by removing and inserting themsel#ato host chromosomal and plasmid DNA and include
Insertion Sequences, Transposons, and integrotisesé elements become associated with eithemtiagible

or mobilizable plasmids, increased chances of tean® other organisms. Numerous resistance geioes,
example, plasmid-intervened beta-lactamase, talliaeyresistance genes, and aminoglycosides-chgngin
catalysts are sorted out on transposons, whictsledinextraordinarily in size and complexity. Trapsons may
have a broader host range than their parent plasard which is important in the dissemination @lis&nce
genes among species (Courvalin, 1994).

Advantageous genes in bacteria can be lost unlesg have the selective advantage. These genes
maintained in bacteria by vertical or horizontal amg of transfer. For example, resistance geneden t
chromosome are transmitted by clonal disseminatiod resistance determinants on plasmids transferred
vertically. HGT mechanisms are mainly classifiedrasisduction (mediated by phages), conjugatiord{ated
by plasmids), and transformation (mediated by uptaknaked DNA) (McDaniett al, 2010)

3.1. Common Waysthat Favor Horizontal Gene Transfer in Bacteria

3.1.1. Transduction

Transduction is the procedure of gene exchangeehblyeat bacteriophage erroneously bundles a porfigheo
host DNA in the capsid and exchanges it to andblaeterium upon subsequent infection (John and Fsohi
2016). It can be a generalized mechanism, any fialctgene can be transferred (Masters, 1996), eciafized
where only genes located near the site of proplaiggration are transferred (Weisberg, 1987). Tiawklly,
phage-host interaction is believed to be quite ifipg®eterka,et al.,2000). However, it can occur across wide
taxonomic boundaries, at least in the hot springrenments (Chiuraet al, 1998). Bacteriophages are viruses
infecting bacteria, which are common and stablenost environments (Jiang and Paul, 1998; Wickelal,
1998). There are different phages for the numbaeidifédrent bacteria (Kokjohn, 1989). This indicatbat pages
from a particular environment facilitate transdantin bacteria's that share the same environmehtivJiang
and Paul, 1998).

The bacteriophage-interceded exchange has beemmemaded to clarify the conveyance of the pyrogenic
exotoxin C among various phylogenetic genealogiésStreptococcus pyogenes (Kapur et al.,, 1992).
Bacteriophages coding for Shiga toxin is involvedhe pathogenicity dE. coli 0157: H7. Recent work shows
that such phages are common in sewage (Muniesdatrel 1998) and that they may be the source oftgen
diversity among Shiga toxin producifgcoli (Muniesaet al, 1999).

Introduction of DNA by phages needs maintenandeamisferred sequences in received bacteria, amdtthe
can be assimilated into the bacterial genome. figusived DNA forms an episome to avoid loss. Iraégn of
exogenous DNA can be mediated by bacteriophaggrades or by mobile element transposases. Thigeis t
important mechanism of gene transfer in the enwrent (Stratzt al, 1996).

3.1.2. Conjugation

Bacterial conjugation is a plasmid or transposoteded gene transfer mechanism that requires physiotact
between cells. As Lederburg and Tatum (1946) fiesin inEscherichia coliit has been reported for numerous
bacterial species. Conjugal gene transfer can docarvariety of environments such as human anchalngut,
rhizosphere, on plant leaves, in seawater and maediments and polluted soils, sludge and watep €T al,
1994).

The classic examples of self-transmissible conjuggtlasmids are the F-plasmid and the plasmid &P4
E. coli. Transfer of such plasmids begins when donormretiuce the pilus, which is encoded by the plasmid
and contact the potential recipient cell which doesscontain the plasmid. Retraction of the piluads the cells
into close contact and a pore forms in the adjgirgall membranes. Development of the mating pagdlithe
plasmid to start the exchange from a solitary steg@inscratch at oriT. The 5’ end of a single strahdhe
plasmid is transferred to the recipient through ploee. During the transfer, the plasmid is repéidain the
donor, its synthesis being primed at the 3" @htl of theoriT nick. Replication of the single strand in the
recipient proceeds by another mechanism using RiiAgrs. At the end, when mating pair separated) belis
contain double-stranded plasmids. Conjugative pldsm@ncode all capacities they requirement foretkghange
amongst cells and in some cases they can encoti@agxchange of mobilizable plasmid, which encaéswy
yet not all of the proteins required for the tramsfOccasionally, conjugative plasmids can integrato
chromosomes, and when such plasmids attempt teféra(duringHfr formation by the F plasmid d&. coli),
they may take part of the chromosome with them §&nyand Champness, 1997).

3.1.3. Transformation

Transformation is an active uptake of exogenous DOiAcompetent cells followed by genomic integration
Normally, transformable species have been recodriizall the major scientific categorizations oftfasteria
and in the Archaea (Kletet al, 2005). For transformation to occur, DNA has &rbleased from donor cells
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and dispersed or maintained in the environment being encountered by potential recipient cellsere are
numerous extracellular DNA of multiple bacterialstes. that can be present in diverse prokaryaeatixtats and
persist for the considerable time (Nielssral, 2007).

In nature, the DNA may come from dead cells thaeland release their DNA. This condition usually
occurs when the recipient bacteria are in the lagarithm phase of their growth. Competent bactegls
produce a special protein that binds donor DNAragts at specific sites on the cell surface. Degpiisting
differences in transformation systems among bagtésur discrete steps are common to all of theampetence
development, DNA binding, DNA uptake, and integratiinto the chromosome (Stewart, 1989). Although
chromosomal DNA can be readily transferred to caenerecipient bacteria, plasmid DNA is not easily
transferred by ordinary transformation procedurat timply adds DNA to recipient cells. However, dpk
procedures widely used in genetic engineering camded to accomplish transformation with plasmidADN
Plasmids can also be transferred to recipient gellphages (Pelczat al, 1992).

3.2. Common TraitsIntroduced Through Horizontal Gene Transfer

It is winding up progressively evident that numergenes inside prokaryotes have been on a levet gjained,
yet not all gene are similarly prone to be exchadngéenes taking part in replication, transcripti@md
translation (informational genes) are less likalybe horizontally transferred than operational gefftiveraet
al., 1998; Jain edl., 1999). Ribosomal RNA for example, which is atjpdithe translation machinery, should be
resistant to horizontal gene transfer. Lawrence99)9inferred that genes encoding the ribosomal RNA
(enlightening genes) are probably not going to xehanged effectively since the beneficiary taxa i@as of
now bear utilitarian orthologues. Moreover, theresponding product of native genes have experieloreg
term coevolution with the rest of the cellular miaehy and are unlikely to be displaced. Howevettha time,

it is known that even rRNA genes are not immunéddzontal gene transfer. According to Asaial, (1999)
16S rRNA ofE. coli can be completely replaced by thatRebteus vulgarisand that the ribosomal protein L11
binding domain oE. coli 23S rRNA can be replaced by the homologous regforeast 28S rRNA. There are
traits that most commonly transferred from one d&agin to another, but most are, antibiotic resistagenes,
pathogenicity determinant genes and metabolic ptpgenes (Asagét al, 1999)

3.2.1. Antibiotic resistance genes

Nearness of bacterial cells in thickly populatednly spaces with microorganisms, for example, atsngat
could support the exchange of hereditary matemaitaining anti-infection opposition qualities to teutial
pathogens. Antibiotic-resistant genes make posdibiethe bacterium to expand its ecological nicloe t
environments where the noxious compound is pre&stause the benefit to the microorganism-derivechf
an antibiotic, resistance is transient. It is nopsising that antibiotic resistance genes arecatad with highly
mobile genetic elements (Ochmetnal, 2000).

3.2.2. Pathogenicity determinants

Unlike the acquisition of antibiotic resistance,option of pathogenic determinants usually involes
fundamental change in the recipient's ecology. Vinelence plasmids of Yersinia and Shigella areesasf
plasmids that make extraordinary phenotypic changesn they are gained (Maure8i al, 1985). Recent
studies have discovered that horizontally acquir@thogenicity islands are the major contributorth®virulent
nature of many pathogenic bacteria. Pathogeniatgnds are chromosomally encoded areas that contain
expansive bunches of virulence genes and can uposotidation; change a kind life form into a patbpg
(Hackeret al, 1997). Some virulence determinants are encogedaabteriophages and lysogenization by such
phage brings about a pathogenic variation of tters{Jacksort al, 1987).

3.2.3. Metabolic properties

Horizontal gene transfer has also played a sigmificrole in the dissemination of genes involved in
physiological processes, which have allowed orgasit explore new environments. Metabolic charisties
are normally mind-boggling, and fruitful preparati@f such attributes requires the physical groupirig
qualities, with the end goal that every single famental quality will be moved in a solitary advanteerefore,
gene bunches and operons, which can be communigatdte beneficiary cell by a host promoter at the
inclusion site, will be chosen (Lawrence and RA®96 Genetic mechanisms responsible for metabd@itst
dissemination are likely to have been the same amiibiotic resistance genes or pathogenicity rdgteants
(Romineet al, 1999).

4. ROLE OF HORIZONTAL GENE EXCHANGE IN BACTERIA

The hugeness of HGT between bacteria was firsteperd when infectious heredity’ of numerous infeasi
from pathogens was watched (Richard and Bruce, )1$96m that point forward, the expected significarof
HGT has changed a few times, yet ongoing advangagafnentally in entire genome sequencing of micsobe
proposed that HGT is a noteworthy, if not the daamin force in bacterial evolution (Doolittlef al, 2003).
Confirmation for monstrous gene trades in bactat@alelopment was found in totally sequenced gendiges
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degenerate piece of procured hereditary componfgguanine cytosine content, codon utilization), high
closeness of genes to distantly related specieftiom of gene content between closely relatedirs$; and
incongruent phylogenetic trees (Koowinal, 2001).

According to Ochmaret al. (2000), up to 20% of a typical bacterial genome ba acquired from other
species. Regularly remainders of plasmid, phageamsposon-related arrangements are discoveretjaouns
qualities distinguished as on a level plane exchdngroposing that this versatile hereditary congmbdrtMGE)
filled in as vectors for HGT" (Ochmaeat al.,2000). The search of 56 sequenced bacterial gemnéon@rophage
sequences performed was revealed that 40 genoméarex prophage sequences exceeding 10 kb inhlengt
which encoded numerous virulence factors and @taptive traits (Canchays al.,2003)

4.1. Effect of Horizontal Gene Transfer on Bacterial Evolution
The primary branching pattern of the universal toédife separates bacteria on one side from Arahaed
Eukarya on the other. But, evidence supporting gaedange between bacterial and archaeal domaavighet
al., 1998; Jairet al, 1999) and gene transfer from bacteria and aechaeukaryotes (Pennisi, 1998) suggest
that reticulated tree or a net might more approglyadescribe the evolution of life (Doolitle, 1999

Horizontal gene transfer results in abrupt largdescalterations in the structure and organizatién o
genomes and is, therefore, capable of generatimgvagiants of bacterial strains by “genetic quantigaps”
(Falkow 1996). It is a potential confounding factorinferring phylogenetic trees based on the segei®f one
gene. There is developing confirmation that HGT ragpen crosswise over huge phylogenetic sepasafion
example, from microscopic organisms to eukaryolso(ittle 1998), from creatures to microbes (Wdifak,
1999), from bacteria to archaea (Nelsainal., 1999) and so on. It appears that some genes hawedi
‘randomly’ through the biosphere, almost as ifli# forms constituted one global organism. TherefdiGT
may create the high degree of similarity betweemodoand recipient strain for the analyzed character
Transferred DNA is introduced into a single lineagel because of that, the acquired trait will eitéd to
descendants of the recipient strain and absent @losely related taxa. The strongest evidence éwizontal
gene transfer derives from genetic analysis of DidA sequences. DNA segments acquired through gene
transfer often display restricted phylogenetic ribisition among related strains or species. Addillyn
horizontally acquired DNA regions display high leveof sequence similarity between strains, which ar
divergent by other criteria (Doolittle, 1999).

It is indicated that horizontal gene transfer major driving force of bacterial and archaeal etioluis not
only dramatic but can also be a threat to the gigetic classification, which is based on compegadinalyses
of the nucleotide sequences of genes encodingaibalsRNAs and some proteins (Woese, 1987).

4.2. Effect of Horizontal Gene Transfer in Drug Resistance

The revelation of the primary anti-toxin, penigillin the mid-twentieth century was a milestonedpeutic leap
forward that ensured people and their trained alsinilom bacterial agents. Numerous trusted thas thi
revelation would prompt the disposal of all siclsesand a general public of basically consummatibeieg.
In any case, none of these expectations was trdesknwly the “miracle medicine penicillin” becamest
effective. With the revelation of DNA being the &ditary code, researchers discovered that a socteriza
were impervious to specific antibiotics becaus@earfies that rendered microbes unaffected by thecdimmd a
few antibiotics agents. Level quality exchange ésmhew variations to emerge without a transforomaiin that
variation. In addition to antibiotic resistance riemsing from natural selection, bacteria can recgenetic
material through the process of horizontal genesfex. The genetic material is received in two fera DNA
plasmid or a transposon. A transposon is a hergditaterial from one living being that winds up ddsinto the
DNA of another life form, while plasmids don't engd consolidated into the DNA of the host creatluevel
quality exchange adds to the spread of anti-miafot@sistance through the trading of hereditary eniait
crosswise over genera, which builds the potentaldestructive anti-infection safe microorganismscteate
(Kaiseret al, 2012).

Bacteria can develop resistance to antibiotics lyatmg existing genes (vertical evolution) (Maetret
al., 2000) or by acquiring new genes from other sfrair species (horizontal gene transfer) (Hegstaal,
2010) and the sharing of genes between bacteridndrizontal gene transfer occurs by many different
mechanisms. Mobile genetic elements, including phaplasmids, and transposons mediate this tramsfdrin
some circumstances, the presence of low levelsh@fantibiotic in the environment is the key sigtfzt
promotes gene transfer; perhaps ensuring that bwewnicrobial community is protected from the hitiic.
The revelation of anti-infection agents was on¢hefbest therapeutic advancements in mankind'srisjswhile
it's manhandled can prompt the improvement of drepoiety's most exceedingly awful scourges (Jeteed,
2009).

5. FACTORSAFFECTING HORIZONTAL GENE TRANSFER
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5.1. Molecular factors affecting HGT

Molecular factors that affect the horizontal gersnsfer in bacteria are the mechanism of genetibange in
bacteria. These mechanisms are mainly classifielaasduction conjugation transformation (McDargelal,
2010) and mechanism of DNA incorporation that idelsi homologous recombination (Majewski and Cohan,
1999) and non-homologous recombination (Stoke atidgs, 2011)

5.1.1. Effect of Mechanisms of Genetic Exchangd®mh

Transduction is a mechanism of genetic exchandgeaateria that contain the bacterial virus (bactdrane)
(John and, Parkinson, 2016). These Phages can @ifeer specific species (or even strains of aigsg or can
have a broad-host-range (i.e., different speciese or even families). (Jensetnal, 1998). An example of a
broad-range bacteriophage is #©T8 phage that has been shown to successfullyféragsnes related to
antibiotic resistance between two different speoiethe Enterobacteriaceae famiBantoea agglomeransnd
Serratia species, so these type phages are capable ofetmamg genetic materials between different baeteri
species that facilitates HGT (Evaetsal, 2010)

Bacterial conjugation is the exchange of hereditagterial between bacterial cells by guide celt¢d-
contact or by an extension like the associatiorwbeh two cells and offer plasmid between two béaxter
(Holmes, 1996). Plasmids can also be categorizeddban their host range, similar to phages. Plascad be
either specific (narrow-host-range) or broad rarfgeoad-host-range). Broad-host-range plasmids can b
transferred even across phyla or even kingdoms. riibst studied case is the transfer of the tumoudird
plasmid (PTI) fromAgrobacterium tumefacien® a plant cell. (Stachel, and. Nester, 1986) Aaptcase of
broad-host-range plasmids is the incompatibilityugr Q plasmids (inch). These plasmids have beemdfau a
wide variety of environments and have been trarsfebetween gram-positive and gram-negative bactexi
broad host range plasmids facilitate HGT and tHabasrow host range plasmids limit HGT (Rawlingsdan
Tietze, 2001)

The components involved in DNA-uptake are not thme for gram-positive and gram-negative bacteria
due to the difference in cell wall structure. Iragr-positive bacteria, retraction of a pseudo pipsns a cell
wall hole that allows DNA to diffuse from the suréa In gram-negative microorganisms, because of the
nearness of an additional layer, DNA take-up rexguthe nearness of a more mind-boggling channedtlyno
framed by discharges (PilQ). In contrast to DNAalkgt, DNA translocation across the cell membrarsnislar
in gram-negative and gram-positive bacteria. Inooapon into the chromosome can be catalyzed by the
mechanisms of HR if sufficient sequence identitistsx so in gram-positive bacteria, there is tlghlihance of
transformation, that can facilitate HGT than inrgraegative bacteria, that can hinder back HGT (Mdeilet
al., 2005)

5.1.2. Effects of Mechanisms of Foreign DNA Incoaion in HGT

Recombination can be responsible for horizontal egaransfer, by homologous or non-homologous
recombination of the gene occurs in bacteria. Hogmls recombination is a kind of hereditary recoration

in which nucleotide arrangements are traded betw&ercomparable or indistinguishable particles &fA Be
that as it may, where all the more indirectly rethtsequences are traded into bacterial genomesoiry n
homologous recombination (Albers al, 2002).

Interestingly, the same process allows the integrabf foreign DNA (from the donor cell) to the
chromosome of the recipient cell, resulting in théstitution of whole or parts of genes. There saeeral
constraints that affect the frequency of HR happdfm instance, the divergence between recombining
sequences has a major (negative) effect on thent@cation rates (Majewski and Cohan, 1999). In toldj the
type of gene and its locations in the genome difgeta HR rates; recent genomic analysis of recoatimn in
Acinetobacter baylyshowed that the rates of recombination might ugryto 10,000 fold across the genome,
and these differences appear to be related to ¢mrs organization and synteny. The outcome of HHRvierse
and depends on multiple factors such as the sefeptiessure of the environment and the geneticrgiree
between the donor and the recipient cells. Sor#sslting effect of homologous recombination onTHRayet
al., 2009).

Non-homologous recombination mechanisms incorpolhA material without the requirement of
sequence homology, and therefore, are more frelyuersponsible for conferring novel metabolic caiptdbs
than HR (Rodriguez-Minguelet al, 2009 and Juhast al, 2009). This incorporation is primarily mediateg
the integration of sequences through mobile gemdtiments (MgE) such as phages, transposases)tagdoins.
The presence of these MgE on the bacterial genesicaply favor HGT in bacteria. There are many stadi
showing HGT mediating the acquisition of pathog@pideterminants. Recently, the dynamics of such
acquisitions have been confirmed using populatiemognic approaches (Dimopouletial, 2007).

5.2. Mechanisms of Immunity-Related System in Bacteriato HGT

Restriction endonucleases recognize specific DNfuerces; these sequences are mostly palindronfesirof
six or eight base pairs. A modification enzyme thathylates the recognition sequence (palindromé)e host
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DNA accompanies the endonucleases. The methylatiotects the host and allows the identification and
degradation of foreign DNA. Therefore, it is expetthat bacteria sharing the same restriction-rigadibn
system can more effectively exchange and incorpdd®A. Late investigations in Neisseria meninggitiave
demonstrated that clade-related confinement adgmtitameworks create a differential obstructionDiNA
trade and that this barrier is consistent withdbserved population structure and frequency of B&d(oni et

al., 2011)

The Clustered Regularly Interspaced Short PalindrdRepeats system (CRISPRs-Cas) is a nucleotide-
based immune system mechanism that provides deéayamnst foreign phages or plasmids. The CRISPRs ar
composed of short repeated sequences (21-48 bih)esgparated by a sequence spacer (26-72 bhjeMyst
of the times, the sequence spacer is derived frbaggs or plasmids that have previously infectedceile
lineage. Examples of acquisition of immunity to N2like phages have been identified, for instangestiains
of Streptococcus mutanév/an der Ploeg, 2009); however, the process biglwé new spacer is integrated into
the host genome remains poorly understood. (Bleayd, 2011). A clear case of how this mechanism aauit li
HGT has been described f@taphylococcus epidermidisA CRISPR present irS epidermis prevents
conjugation and plasmid transformation of knowrpbtdococcal conjugative plasmids by the bindingthod
spacer RNA to a nickase gene present in almosstafphylococcal conjugative plasmids (Marraffini and
Sonthiemer 2008).

5.3. Ecological Factors Affecting HGT

Ecological interactions and preexisting diversitfiience the genetic adaptation of populations.uRdipns
capable of HGT can adapt faster than clonal ohésjrndicates that genetic diversity of co-occugrorganisms
in the environment can provide new or advantagediagges for adaptation through HGT. There is alse t
higher frequency of HGT between niche-overlappirgpaisms (Perroat al, 2011).

When different bacteria's with different chromosdyancoded drug resistance mechanisms were liwing
the same environment, MDR evolved rapidly in ssaivith an active HR mechanism through shufflinghef
preexisting resistance alleles. The multidrug-tasis(MDR) Staphylococcus aureus one interesting example
of how preexisting genetic diversity fosters fasagiaptation to new antibiotics in clinical settingsnally,
different bacteria's living in the same environmthgt are having different advantageous genes daptahe
environment quickly than others (Baltretsal, 2008).

Ecological interactions are protocooperation, comsaéism, neutralism, amensalism and competition
(Atlas, and Bartha, 1987). Genetic exchange betvegeaccurring organisms has been observed at differ
levels of genetic divergence, ranging from sameisgeto different phyla or kingdoms (Beilat al., 2005).
Accordingly, it can be hypothesized that the d#éferecological interactions among co-occurring Egseof
bacteria can have an important effect on the frequeof encounter and therefore, can facilitate ropade,
depending on the type of interaction (Smibieal, 2011).

6. CONCLUSION AND RECOMMENDATION
Gene transfer is to transfer a gene from one DNAeowe to another DNA molecule by the horizontatl an
vertical way. Level quality exchange (HGT) alludas the development of hereditary material between
organisms that do not take after the ordinary pathwf vertical transmission from parent to posyerit
Progressively, investigations of qualities and gees are showing that extensive even quality exahdras
happened between prokaryotes. Bacteria's can siggblg chance to evolve from one strain to andtierthey
get an advantage to drug resistance, environmewbtation, and pathogenic to the host. Horizogéale
transfer is the primary mechanism for the evolutidrbacteria and plays an important role in theeagrof
antibiotic resistance. Findings indicating thatréhis also HGT in the rumen of animals. Genes d@natmostly
transferred from one bacterium to the others armhgoeenicity property genes, drug resistance geard,
metabolic property genes. However, this HGT carafected by molecular factors, immunity, and ecalab
factors. Therefore, horizontal gene transfer hasrgortant role in the evolution and transfer afiglresistance
genes in bacteria. Finally, HGT will suddenly ledthe development of one of society's worst epidem
Therefore, it is important to control rapid horizaingene transfer.
Based on the above conclusion the following recontdagons are forwarded:
v' Continuous research should be conducted to check HGmicro floras with respect to drug
resistance.
v" Organized and detail study Should be done on tffereit factors affecting horizontal gene
transfer in bacteria
v' Many of the basic components and mechanisms indolmethe modulation of Bacterial gene
transfer should be characterized.
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