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Abstract 

In this article, we consider Cauchy problem for the nonlinear parabolic-hyperbolic partial differential equations. 

These equations are solved by He-Laplace method.. It is shown that, in He-Laplace method, the nonlinear terms 

of differential equation can be easily handled by the use of He’s polynomials and provides better results. 
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1. Introduction  

Nonlinearity exists everywhere and nature is nonlinear in general. The search for a better and easy to use 

tool for the solution of nonlinear equations that illuminate the nonlinear phenomena of real life problems of 

science and engineering has recently received a continuing interest. Various methods, therefore, were proposed 

to find approximate solutions of nonlinear equations. Some of the classical analytic methods are Lyapunov’s 

artificial small parameter method [17], perturbation techniques [6,23,22, 25]. The Laplace decomposition 

method have been used to solve nonlinear differential equations [1-4, 16, 19, 20, 27]. J.H.He developed the 

homotopy perturbation method (HPM) [6-13,14-15,21,24,26]  by merging the standard homotopy and 

perturbation for solving various physical problems.Furthermore, the homotopy perturbation method is also 

combined with the well-known Laplace transformation method [18] which is known as Laplace homotopy 

perturbation method.  

        In this paper, the main objective is to solve partial differential equations by using He-Laplace method.  

It is worth mentioning that He-Laplace method is an elegant combination of the Laplace transformation, the 

homotopy perturbation method and He’s polynomials. The use of He’s polynomials in the nonlinear term was 

first introduced by Ghorbani [5, 23]. This paper contains basic idea of homotopy perturbation method in section 

2, He-Laplace method in section 3, examples in section 4 and conclusions in section 5 respectively. 

 

2. Basic idea of homotopy perturbation method 

 

      Consider the following nonlinear differential equation  

                      )1(,0)()( Ω∈=− rrfyA  

      with the boundary conditions of  
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where A, B, )(rf and Γ  are a general differential operator, a boundary operator, a known analytic function and 

the boundary of the domain Ω , respectively. 

        The operator A can generally be divided into a linear part L and a nonlinear part N. Eq. (1) may therefore be 

written as: 

  )3(,0)()()( =−+ rfyNyL  

 By the homotopy technique, we construct a homotopy   Rprv →×Ω ]1,0[:),( which satisfies: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] )4(01, 0 =−+−−= rfvApyLvLppvH   

                       or 

( ) ( ) ( ) ( ) ( ) ( )[ ] )5(0, 00 =−++−= rfvNpyLpyLvLpvH  

 where ]1,0[∈p is an embedding parameter, while 0y  
is an initial approximation of Eq.(1), which satisfies the 

boundary conditions. Obviously,from Eqs.(4) and (5) 

we will have: 
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( ) ( ) ( ) )6(,00, 0 =−= yLvLvH    

( ) )7(,0)()(1, =−= rfvAvH
 

 The changing process of p from zero to unity is just that of ( )prv ,  from 0y  to )(ry . In topology, this is 

called deformation, while ( ) )( 0yLvL −  and )()( rfvA − are called homotopy. If the embedding parameter 

p
 
is considered as a small parameter, applying the classical perturbation technique, we can assume that the 

solution of Eqs.(4) and (5) can be written as a power series in p : 

    )8(..............................3
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Setting 1=p
 
in Eq.(8), we have  

  )9(................................210
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The combination of the perturbation method and the homotopy method is called the HPM, which eliminates the 

drawbacks of the traditional perturbation methods while keeping all its advantages. The series (9) is convergent 

for most cases. However, the convergent rate depends on the nonlinear operator )(vA . Moreover, He [6] made 

the following suggestions: 

(1)The second derivative of )(vN  with respect to v  must be small because the parameter may be relatively 

large, i.e. 1→p .  

(2) The norm of 
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 must be smaller than one so that the series converges.  

 

3. He-Laplace method   

Consider the following Cauchy problem for the nonlinear parabolic-hyperbolic differential equation: 
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with initial conditions 
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where the nonlinear term is represented by ,)(yF and ∆ is the Laplace operator in .nR we rewrite the eqn(10) 

as follows: 
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Applying the laplace transform of both sides of (12), we have 
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Using initial conditions (11) in (14), we have 
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Taking inverse Laplace transform, we have 
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Now, we apply homotopy perturbation method[18], 
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Where the term ny are to recursively calculated and the nonlinear term )(yF can be decomposed as  
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Here, He’s polynomials nH are given by 
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Substituting Eqs.(18) and (19) in (17), we get 
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Comparing the coefficient of like powers of p, we obtained ..........).........,(),,(),,( 210 txytxytxy . Adding 

all these values, we obtain ),( txy . 

4. Examples 

Example 4.1. Consider the following differential equation [22]:  
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with the following condition: 
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The exact solution of above problem is given by 
34 4),( txtxy +−= . 

By applying the aforesaid method subject to the initial conditions, we have        
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Now, we apply the homotopy perturbation method, we have 
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Where, )(yH n are He,s polynomials. 

Comparing the coefficient of like powers of p, we have  
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Hence, the solution of ),( txy is given by  
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Which is the exact solution of the problem. 

Example 4.2. Consider the following nonlinear PDE [22]:  
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with the following condition: 
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The exact solution of above problem is given by 

)cos(),( txtxy += . 

By applying the aforesaid method subject to the initial conditions, we have 
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Now, we apply the homotopy perturbation method, we have 
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Where, )(yH n are He,s polynomials. 

Comparing the coefficient of like powers of p, we have  
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Hence, the solution of ),( txy is given by  
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Which is the exact solution of the problem. 

 

5. Conclusions  

       In this work, we used He-Laplace method for solving nonlinear partial differential parabolic-hyperbolic 

equations. The results have been approved the efficiency of this method for solving these problems. It is worth 

mentioning that the He-Laplace method is capable of reducing the volume of the computational work and gives 

high accuracy in the numerical results.  
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