On Initial and Final Characterized L-topological Groups

A. S. ABD-ALLAH*

Department of Mathematics, Faculty of Science, El-Mansoura University, El-Mansoura, Egypt

Abstract:
In this research work, new topological notions are proposed and investigated. The notions are named final characterized L-spaces and initial and final characterized L-topological groups. The properties of such notions are deeply studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category CRL-Sp and hence CRL-Sp is topological category over the category SET of all sets. By the notion of final characterized L-space, the notions of characterized quotient pre L-spaces and characterized sum L-spaces are introduced and studied. The characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjections are the equalizers and co-equalizers, respectively in CRL-Sp. Moreover, we show that the initial and final lefts and then the initial and final characterized L-topological groups uniquely exist in the category CRL-TopGrp. Hence, the category CRL-TopGrp is topological category over the category Grp of all groups. By the notion of initial and final characterized L-topological groups, the notions of characterized L-subgroups, characterized product L-topological groups and characterized L-topological quotient groups are introduced and studied. We show that the category CRL-TopGrp is concrete and co-concrete category of the category L-Top. Finally, we show that the special faithful functors $J: CRL-TopGrp \rightarrow L-Top$ and $J^*: L-Top \rightarrow CRL-TopGrp$ are isomorphism, that is, the category CRL-TopGrp is algebraic and co-algebraic category over the category L-Top as in sense of [7].

Keywords: L-filter, topological L-space, operations, characterized L-space, categories L-Top, Grp, CRL-Sp, SCRL-Sp, CR-Sp, CRL-TopGrp and CR-TopGrp, $\varphi_{1,2}$ L-neighborhood filters, $\varphi_{1,2}$ L-continuous, $\varphi_{1,2}$ L-open, $\varphi_{1,2}$ L-homeomorphism, $\varphi_{1,2}$ L-homomorphism, final characterized L-space, characterized quotient pre L-space, characterized sum L-space, characterized L-topological group, characterized L-subgroup, characterized product L-topological group, characterized L-topological quotient group.

1. Introduction

The notion of L-filter has been introduced by Eklund et al. [10]. By means of this notion a point-based approach to L-topology related to the usual points has been developed. More general concept for L-filter introduced by Gündler in [11] and L-filters are classified by types. Because of the specific type of L-filter however the approach of Eklund is related only to L-topologies which are stratified, that is, all constant L-sets are open. The more specific L-filters considered in the former papers are called now homogeneous. The operation on the ordinary topological space (X, T) has been defined by Kasahara ([16]) as a mapping φ from T into 2^X such that, $A \subseteq A^\varphi$, for all $A \in T$. In [5], Abd El-Monsef's et al. extended Kasahara's operation to the power set $P(X)$ of a set X. Kandil et al. ([15]), extended Kasahara's and Abd El-Monsef's operations by introducing an operation on the class of all L-sets endowed with an L-topology τ as a mapping $\varphi: L^X \rightarrow L^X$ such that $\text{int} \mu \subseteq \mu^\varphi$ for all $\mu \in L^X$, where μ^φ denotes the value of φ at μ. The notions of the L-filters and the operations on the class of all L-sets on X endowed with an L-topology τ are applied in [2,3,4] to introduce a more general theory including all the weaker and stronger forms of the L-topology. By means of these notions the notion of $\varphi_{1,2}$-interior of L-set, $\varphi_{1,2}$ L-convergence and $\varphi_{1,2}$ L-neighborhood filters are defined and applied to introduced many special classes of separation axioms. The notion of $\varphi_{1,2}$-interior operator for L-sets is defined as a mapping $\varphi_{1,2}^\text{int}: L^X \rightarrow L^X$ which fulfill (11) to (15) in [2]. There is a one-to-one correspondence between

* Present address: Department of Mathematics, Faculty of Science and humanities studies, Salman Bin Abdulaziz Univ., P. O. Box 132012, Code No. 11941 Hotat Bani Tamim, Saudi Arabia
E-mail address: asabdallah@hotmail.com and drhmsa1961@yahoo.com

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.4, No.3, 2014

www.iiste.org
the class of all \(\varphi_{1,2} \)-open L-subsets of \(X \) and these operators, that is, the class \(\varphi_{1,2} \cdot \text{OF}(X) \) of all \(\varphi_{1,2} \)-open L-subsets of \(X \) can be characterized by these operators. Then the triple \((X, \varphi_{1,2} \cdot \text{OF}(X))\) will be called the characterized L-space of \(\varphi_{1,2} \)-open L-subsets. The characterized L-spaces are characterized by many of characterizing notions in [2,3], for example by: \(\varphi_{1,2} \)-neighborhood filters, \(\varphi_{1,2} \)-interior of the L-filters and by the set of \(\varphi_{1,2} \)-inner points of the L-filters. Moreover, the notions of closeness and compactness in characterized L-spaces are introduced and studied in [4].

This paper is devoted to introduce and study the notions of final characterized L-spaces and initial and final characterized L-topological groups as a generalization of the weaker and stronger forms of the final topological L-space and initial and final L-topological group introduced in [8, 18]. **In section 2**, some definitions and notions related to L-sets, L-topologies, L-filters, operations on L-sets, characterized L-spaces, \(\varphi_{1,2} \)-L-neighborhood filters, \(\varphi_{1,2} \)- continuity and \(\varphi_{1,2} \)-homomorphisms as a morphisms between them are presented. **Section 3**, is devoted to introduce and study the notion of final characterized L-spaces. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category \(\text{CRL-Sp} \). Further notions related to the notion of characterized L-spaces are e.g. those of a characterized quotient pre L-spaces and a characterized sum L-spaces are investigated as special cases for the notions of final characterized L-spaces. By the initial and final lefts in \(\text{CRL-Sp} \) we show that the category \(\text{CRL-Sp} \) is topological category over the category \(\text{SET} \) of all sets in sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in \(\text{CRL-Sp} \) exist, which of course are unique up to isomorphisms. According to general procedure, we show that the characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjections are equalizers and co-equalizers in \(\text{CRL-Sp} \), respectively. **Section 4**, is devoted to introduce and study the notion of initial characterized L-topological groups as a generalization of the weaken and stronger forms of the initial L-topological groups which introduced in [8]. It will be shown that the initial lefts and then the initial characterized L-topological groups are uniquely exist in the category \(\text{CRL-TopGrp} \) and therefore, the category \(\text{CRL-TopGrp} \) is topological category over the category \(\text{Grp} \) of all groups. More generally, we show that the category \(\text{CRL-TopGrp} \) is concrete category of the category \(\text{L-Top} \) of all topological spaces and the faithful functor \(\mathcal{F}: \text{CRL-Grp} \rightarrow \text{L-Top} \) is isomorphism. Thus, the category \(\text{CRL-TopGrp} \) is algebraic category over the category \(\text{L-Top} \) in sense of [7]. Finally, by the notion of initial characterized L-topological groups, the notions of characterized L-subgroups and characterized product L-topological groups are introduced and studied. **In section 5**, the notion of final characterized L-topological groups are introduced and studied as a generalization of the weaken and stronger forms of the final L-topological groups introduced in [8]. It will be shown that the final lefts and then the final characterized L-topological groups are uniquely exist in the category \(\text{CRL-TopGrp} \). More generally, we show that the category \(\text{CRL-TopGrp} \) is co-concrete category of the category \(\text{L-Top} \) of all topological L-spaces and the faithful functor \(\mathcal{F}^*: \text{L-Top} \rightarrow \text{CRL-TopGrp} \) is isomorphism. Thus, the category \(\text{CRL-TopGrp} \) is co-algebraic category over the category \(\text{L-Top} \) in sense of [7]. By the notion of final characterized L-topological groups, the notions of characterized L-topological quotient groups is introduced and studied. Finally, we present a relation between the characterized L-topological quotient groups and the characterized product L-topological groups.

2. Preliminaries

In this research work we consider L be a completely distributive complete lattice with different least and last elements 0 and 1, respectively. Consider \(L_0 = L \setminus \{0\} \) and \(L_* = L \setminus \{1\} \). Sometimes we will assume more specially that L is complete chain, that is, L is a complete lattice whose partial ordering is a linear one. For a set \(X \) , let \(L^X \) be the set of all L-subsets of \(X \) , that is, of all mappings \(f : X \rightarrow L \). Assume that an order-reversing involution \(\alpha \mapsto \alpha^* \) of L is fixed. For each L-set \(\mu \subseteq L^X \), let \(\mu^* \) denote the complement of \(\mu \) and it is defined by: \(\mu^*(x) = \mu(x)^* \) for all \(x \in X \). Denote by \(\overline{\alpha} \) the constant L-subset of \(X \) with value \(\alpha \in L \). For all
\(x \in X \), and for all \(\alpha \in L_0 \), the L-subset \(x_\alpha \) of \(X \) whose value \(\alpha \) at \(x \) and 0 otherwise is called an L-point in \(X \). Now, we begin by recalling some facts on the L-filters.

L-filters. The L-filter on a set \(X \) ([11]) is a mapping \(\mathcal{M} : L^X \rightarrow L \) such that the following conditions are fulfilled:

(F1) \(\mathcal{M}(\alpha) \leq \alpha \) for all \(\alpha \in L \) and \(\mathcal{M}(1) = 1 \).

(F2) \(\mathcal{M}(\mu \land \rho) = \mathcal{M}(\mu) \land \mathcal{M}(\rho) \) for all \(\mu, \rho \in L^X \).

The L-filter \(\mathcal{M} \) is called homogeneous ([11]) if \(\mathcal{M}(\alpha) = \alpha \) for all \(\alpha \in L \). For each \(x \in X \), the mapping \(\hat{x} : L^X \rightarrow L \) defined by \(\hat{x}(\mu) = \mu(x) \) for all \(\mu \in L^X \) is a homogeneous L-filter on \(X \). For each \(\mu \in L^X \), the mapping \(\hat{\mu} : L^X \rightarrow L \) defined by \(\hat{\mu}(\eta) = \bigwedge_{0 \leq \eta(x)} \eta(x) \) for all \(\eta \in L^X \) is also homogeneous L-filter on \(X \), called homogenous L-filter at the L-subset \(\mu \in L^X \). Let \(\mathcal{F}_LX \) and \(F_LX \) will be denote the sets of all L-filters and of all homogeneous L-filters on a set \(X \), respectively. If \(\mathcal{M} \) and \(\mathcal{N} \) are L-filters on a set \(X \), \(\mathcal{M} \) is said to be finer than \(\mathcal{N} \), denoted by \(\mathcal{M} \leq \mathcal{N} \), provided \(\mathcal{M}(\mu) \geq \mathcal{N}(\mu) \) holds for all \(\mu \in L^X \). Noting that if \(L \) is a complete chain then \(\mathcal{M} \) is not finer than \(\mathcal{N} \), denoted by \(\mathcal{M} \not \leq \mathcal{N} \), provided there exists \(\mu \in L^X \) such that \(\mathcal{M}(\mu) < \mathcal{N}(\mu) \) holds.

For each non-empty set \(\mathcal{A} \) of the L-filters on \(X \) the supremum \(\bigvee_{\mathcal{M} \in \mathcal{A}} \mathcal{M} \) exists ([11]) and given by:

\[
\bigvee_{\mathcal{M} \in \mathcal{A}} \mathcal{M}(\mu) = \bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M}(\mu)
\]

for all \(\mu \in L^X \). Whereas the infimum \(\bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M} \) of \(\mathcal{A} \) does not exists in general as an L-filter. If the infimum \(\bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M} \) exists, then we have:

\[
\bigwedge_{\mathcal{M} \in \mathcal{A}} \mathcal{M}(\mu) = \bigvee_{\mu \leq \mu_1 \leq \ldots \leq \mu_n} (\mathcal{M}_1(\mu_1) \land \cdots \land \mathcal{M}_n(\mu_n))
\]

For all \(\mu \in L^X \), where \(n \) is a positive integer, \(\mu_1, \ldots, \mu_n \) is a collection such that \(\mu_1 \land \cdots \land \mu_n \leq \mu \) and \(\mathcal{M}_1, \ldots, \mathcal{M}_n \) are L-filters from \(\mathcal{A} \). Let \(X \) be a set and \(\mu \in L^X \), then the homogeneous L-filter \(\hat{\mu} \) at \(\mu \in L^X \) is the L-filter on \(X \) given by:

\[
\hat{\mu} = \bigvee_{0 \leq \mu(x)} \hat{x}(\mu)
\]

L-filter bases. A family \((\mathcal{B}_\alpha)_{\alpha \in L_0} \) of non-empty subsets of \(L^X \) is called a valued L-filter base ([11]) if the following conditions are fulfilled:

(V1) \(\mu \in \mathcal{B}_\alpha \) implies \(\alpha \leq \sup \mu \).

(V2) For all \(\alpha, \beta \in L_0 \) with \(\alpha \land \beta \in L_0 \) and all \(\mu \in \mathcal{B}_\alpha \) and \(\rho \in \mathcal{B}_\beta \) there are \(\gamma \geq \alpha \land \beta \) and \(\eta \geq \mu \land \sigma \) such that \(\eta \in \mathcal{B}_\gamma \).

Each valued base \((\mathcal{B}_\alpha)_{\alpha \in L_0} \) defines the L-filter \(\mathcal{M} \) on \(X \) ([11]) by \(\mathcal{M}(\mu) = \bigvee_{\rho \in \mathcal{B}_\alpha, \rho \preceq \mu} \alpha \) for all \(\mu \in L^X \). Conversely, each L-filter \(\mathcal{M} \) can be generated by a valued base, e.g. by \((\alpha \text{-pr} \mathcal{M})_{\alpha \in L_0} \) with \(\alpha \text{-pr} \mathcal{M} = \{ \mu \in L^X \mid \alpha \leq \mathcal{M}(\mu) \} \). The family \((\alpha \text{-pr} \mathcal{M})_{\alpha \in L_0} \) is a family of prefilter on \(X \) and is called the large valued base of \(\mathcal{M} \). Recall that a prefilter on \(X \) ([16]) is a non-empty proper subset \(\mathcal{F} \) of \(L^X \) such that:

(1) \(\mu, \rho \in \mathcal{F} \) implies \(\mu \land \rho \in \mathcal{F} \) and (2) from \(\mu \in \mathcal{F} \) and \(\mu \leq \rho \) it follows \(\rho \in \mathcal{F} \).
Topological L-spaces. By an L-topology on a set X ([9, 14]), we mean a subset of $\mu \in L^X$ which is closed with respect to all suprema and all finite infima and contains the constant L-sets $\overline{0}$ and $\overline{1}$. A set X equipped with an L-topology τ on X is called topological L-space. For each topological L-space (X, τ), the elements of τ are called open L-subsets of this space. If τ_1 and τ_2 are L-topologies on a set X, τ_2 is said to be finer than τ_1 and τ_1 is said to be coarser than τ_2 provided $\tau_1 \subseteq \tau_2$ holds. For each L-set $\mu \in L^X$, the strong α-cut and the weak α-cut of μ are ordinary subsets of X defined by the subsets $S_\alpha (\mu) = \{ x \in X : \mu(x) > \alpha \}$ and $W_\alpha (\mu) = \{ x \in X : \mu(x) \geq \alpha \}$, respectively. For each complete chain L, the α-level topology and the initial topology ((17)) of an L-topology τ on X are defined as follows:
$$\tau_\alpha = \{ S_\alpha (\mu) \in P(X) : \mu \in \tau \} \quad \text{and} \quad i(\tau) = \inf \{ \tau_\alpha : \alpha \in L_1 \},$$
respectively, where \inf is the infimum with respect to the finer relation on topologies. On other hand if (X,\mathcal{T}) is ordinary topological space, then the induced L-topology on X is denoted by $O_{(L^X,\mathcal{T})}$. Denote by L-Top and Top to the categories of all topological L-spaces and all ordinary topological spaces, respectively.

Operation on L-sets. In the sequel, let a topological L-space (X, τ) be fixed. By the operation (15) on a set X we mean a mapping $\varphi : L^X \rightarrow L^X$ such that $\int \mu \leq \mu^0$ holds, for all $\mu \in L^X$, where μ^0 denotes the value of φ at μ. The class of all operations on X will be denoted by $O_{(L^X,\tau)}$. The constant operation on the class of all ordinary operations $S_{\alpha} (\mu) \in P(X)$ will be denoted by $O_{(P(X),\mathcal{T})}$, and also τ are said to be stratified provided $\alpha \in \tau$ holds for all $\alpha \in L$, that is, all constant L-sets are open ((17)). By identity operation on X, then obviously, $\int \cdot \leq \inf$ with respect to all suprema and all finite infima and contains the constant L-sets $\overline{0}$ and $\overline{1}$.

$$\varphi : L^X \rightarrow L^X$$

will be called:
(i) Isotone if $\mu \leq \rho$ implies $\mu^0 \leq \rho^0$, for all $\mu, \rho \in L^X$.
(ii) Weakly finite intersection preserving (wfip, for short) with respect to $A \subseteq L^X$ if $\rho \land \mu^0 \leq (\rho \land \mu)^0$ holds, for all $\rho \in A$ and $\mu \in L^X$.
(iii) Idempotent if $\mu^0 = (\mu^0)^0$, for all $\mu \in L^X$.

φ-open L-sets. Let a topological L-space (X, τ) be fixed and $\varphi \in O_{(L^X,\tau)}$. The L-set $\mu : X \rightarrow L$ will be called φ-open L-set if $\mu \leq \mu^0$ holds. We will denote the class of all φ-open L-sets on X by $\varphi O F (X)$. The L-set μ is called φ-closed if its complement $\complement \mu$ is φ-open. The two operations $\varphi, \psi \in O_{(L^X,\tau)}$ are equivalent and written $\varphi \sim \psi$ if $\varphi O F (X) = \psi O F (X)$.

$\varphi_{1,2}$-interior of L-sets. Let a topological L-space (X, τ) be fixed and $\varphi_1, \varphi_2 \in O_{(L^X,\tau)}$. Then the $\varphi_{1,2}$-interior of the L-set $\mu : X \rightarrow L$ is the mapping $\varphi_{1,2} \cdot \int \mu : X \rightarrow L$ defined by:

$$\varphi_{1,2} \cdot \int \mu = \bigvee_{\rho \in \varphi O F (X), \rho^0 \leq \mu} \rho$$

(2.1)
\(\varphi_{1,2}.\text{int} \mu \) is the greatest \(\varphi_{1} \)-open L-set \(\rho \) such that \(\rho^{\varphi_{1}} \) less than or equal to \(\mu \) (\([2]\)). The L-set \(\mu \) is said to be \(\varphi_{1,2} \)-open if \(\mu \leq \varphi_{1,2}.\text{int} \mu \). The class of all \(\varphi_{1,2} \)-open L- sets on \(X \) will be denoted by \(\varphi_{1,2}OF(X) \).

The complement \(\text{co} \mu \) of a \(\varphi_{1,2} \)-open L-subset \(\mu \) will be called \(\varphi_{1,2} \)-closed, the class of all \(\varphi_{1,2} \)-closed L-subsets of \(X \) will be denoted by \(\varphi_{1,2}CF(X) \). In the classical case of \(L = \{0, 1\} \), the topological L-space \((X, \tau) \) is up to identification by the ordinary topological space \((X, T) \) and \(\varphi_{1,2}.\text{int} \mu \) is the classical one. Hence, in this case the ordinary subset \(A \) of \(X \) is \(\varphi_{1,2} \)-open if \(A \subseteq \varphi_{1,2}.\text{int} A \). The complement of a \(\varphi_{1,2} \)-open subset \(A \) of \(X \) will be called \(\varphi_{1,2}C(A) \). The class of all \(\varphi_{1,2} \)-open and the class of all \(\varphi_{1,2} \)-closed subsets of \(X \) will be denoted by \(\varphi_{1,2}O(X) \) and \(\varphi_{1,2}C(X) \), respectively. Clearly, \(F \) is \(\varphi_{1,2} \)-closed if and only if \(\varphi_{1,2}.\text{cl} \, F = F \).

Proposition 2.1 \([2]\) If \((X, \tau) \) is a topological L-space and \(\varphi_{1}, \varphi_{2} \in O_{(L^{x}, \tau)} \). Then, the mapping \(\varphi_{1,2}.\text{int} \mu : X \rightarrow L \) fulfills the following axioms:

(i) If \(\varphi_{2} \geq 1_{L^{x}} \), then \(\varphi_{1,2}.\text{int} \mu \leq \mu \) holds.

(ii) \(\varphi_{1,2}.\text{int} \mu \) is isotone, i.e., if \(\mu \leq \rho \) then \(\varphi_{1,2}.\text{int} \mu \leq \varphi_{1,2}.\text{int} \rho \) holds for all \(\mu, \rho \in L^{x} \).

(iii) \(\varphi_{1,2}.\text{int} 1_{L^{x}} = 1_{L^{x}} \).

(iv) If \(\varphi_{2} \geq 1_{L^{x}} \) is isotone operation and \(\varphi_{1} \) is wfip with respect to \(\varphi_{1}OF(X) \), then \(\varphi_{1,2}.\text{int} (\mu \wedge \rho) = \varphi_{1,2}.\text{int} \mu \wedge \varphi_{1,2}.\text{int} \rho \) for all \(\mu, \rho \in L^{x} \).

(v) If \(\varphi_{1} \) is isotope and idempotent operation, then \(\varphi_{1,2}.\text{int} \mu \leq \varphi_{1,2}.\text{int} (\varphi_{1,2}.\text{int} \mu) \) holds.

(vi) \(\varphi_{1,2}.\text{int} (\bigvee_{\mu_{1}}) = \bigvee_{\mu_{1}} \varphi_{1,2}.\text{int} \mu_{1} \) for all \(\mu_{1} \in \varphi_{1,2}O(X) \).

Proposition 2.2 \([2]\) Let \((X, \tau) \) be a topological L-space and \(\varphi_{1}, \varphi_{2} \in O_{(L^{x}, \tau)} \). Then the following are fulfilled:

(i) If \(\varphi_{2} \geq 1_{L^{x}} \), then the class \(\varphi_{1,2}OF(X) \) of all \(\varphi_{1,2} \)-open L-sets on \(X \) forms an extended L-topology on \(X \), denoted by \(\tau^{\varphi_{1,2}} \) (\([13]\)).

(ii) If \(\varphi_{2} \geq 1_{L^{x}} \), then the class \(\varphi_{1,2}OF(X) \) of all \(\varphi_{1,2} \)-open L-sets on \(X \) forms a supra L-topology on \(X \), denoted by \(\tau^{\varphi_{1,2}} \) (\([13]\)).

(iii) If \(\varphi_{2} \geq 1_{L^{x}} \) is isotone and \(\varphi_{1} \) is wfip with respect to \(\varphi_{1}OF(X) \), then \(\varphi_{1,2}OF(X) \) is a pre L-topology on \(X \), denoted by \(\tau_{\varphi_{1,2}}^{\varphi_{1}} \) (\([13]\)).

(iv) If \(\varphi_{2} \geq 1_{L^{x}} \) is isotone and idempotent operation and \(\varphi_{1} \) is wfip with respect to \(\varphi_{1}OF(X) \), then \(\varphi_{1,2}OF(X) \) forms an L-topology on \(X \), denoted by \(\tau_{\varphi_{1,2}}^{\varphi_{1}} \) (\([9, 14]\)).

From Propositions 2.1 and 2.2, if the topological L-space \((X, \tau) \) be fixed and \(\varphi_{1}, \varphi_{2} \in O_{(L^{x}, \tau)} \). Then

\[
\varphi_{1,2}OF(X) = \{ \mu \in L^{x} \mid \mu \leq \varphi_{1,2}.\text{int} \mu \}
\] \hspace{1cm} (2.2)

and the following conditions are fulfilled:

(11) If \(\varphi_{2} \geq 1_{L^{x}} \), then \(\varphi_{1,2}.\text{int} \mu \leq \mu \) holds for all \(\mu \in L^{x} \).

(12) If \(\mu \leq \rho \) then \(\varphi_{1,2}.\text{int} \mu \leq \varphi_{1,2}.\text{int} \rho \) holds for all \(\mu, \rho \in L^{x} \).

(13) \(\varphi_{1,2}.\text{int} 1_{L^{x}} = 1_{L^{x}} \).
If \(\varphi_2 \geq 1_{L^x} \) is isotone and \(\varphi_1 \) is wisp with respect to \(\varphiOF(X) \), then
\[
\varphi_{1,2} \cdot \text{int}(\mu \land \rho) = \varphi_{1,2} \cdot \text{int} \mu \land \varphi_{1,2} \cdot \text{int} \rho
\]
for all \(\mu, \rho \in L^x \).

(15) If \(\varphi_2 \geq 1_{L^x} \) is isotone and idempotent, then
\[
\varphi_{1,2} \cdot \text{int}(\varphi_{1,2} \cdot \text{int} \mu) = \varphi_{1,2} \cdot \text{int} \mu
\]
for all \(\mu \in L^x \).

Characterized L-spaces. Independently on the L-topologies, the notion of \(\varphi_{1,2} \)-interior operator for L-sets can be defined as a mapping \(\varphi_{1,2} \cdot \text{int} : L^x \to L^x \) which fulfills (11) to (15). It is well-known that (2.1) and (2.2) give a one-to-one correspondence between the class of all \(\varphi_{1,2} \)-open L-sets and these operators, that is, \(\varphi_{1,2} \cdot OF(X) \) can be characterized by \(\varphi_{1,2} \)-interior operators. In this case the pair \((X, \varphi_{1,2} \cdot \text{int}) \) as well as the pair \((X, \varphi_{1,2} \cdot OF(X)) \) will be called characterized L-space ([2]) of \(\varphi_{1,2} \)-open L-sets of \(X \). If \((X, \varphi_{1,2} \cdot \text{int}) \) and \((X, \psi_{1,2} \cdot \text{int}) \) are two characterized L-spaces, then \((X, \varphi_{1,2} \cdot \text{int}) \) is said to be finer than \((X, \psi_{1,2} \cdot \text{int}) \) and denoted by \(\varphi_{1,2} \cdot \text{int} \leq \psi_{1,2} \cdot \text{int} \) provided \(\varphi_{1,2} \cdot \text{int} \mu \geq \psi_{1,2} \cdot \text{int} \mu \) holds for all \(\mu \in L^x \).

The characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) of all \(\varphi_{1,2} \)-open L-sets is said to be stratified if and only if \(\varphi_{1,2} \cdot \text{int} \alpha = \alpha \) for all \(\alpha \in L \). As shown in [2], the characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) is stratified if the related L-topology is stratified. Moreover, the characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) is said to have the weak infimum property ([13]) provided for all \(\mu \in L^x \) and \(\alpha \in L \). The characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) is said to be strongly stratified ([13]) provided \(\varphi_{1,2} \cdot \text{int} \) is stratified and have the weak infimum property.

If \(\varphi_1 = \text{int} \) and \(\varphi_2 = 1_{L^x} \), then the class \(\varphi_{1,2} \cdot OF(X) \) of all \(\varphi_{1,2} \)-open L-set of \(X \) coincide with \(\tau \) which is defined in [9,14] and hence the characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) coincide with the topological L-space \((X, \tau) \).

\(\varphi_{1,2} \)-neighborhood filters. An important notion in the characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) is that of a \(\varphi_{1,2} \)-neighborhood filter at the point and at the ordinary subset in this space. Let \((X, \tau) \) be a topological L-space and \(\varphi_1, \varphi_2 \in O_{(L^x, \tau)} \). As follows by (11) to (15) for each \(x \in X \), the mapping
\[
\mathcal{N}_{\varphi_{1,2}}(x) : L^x \to L
\]
which is defined by
\[
\mathcal{N}_{\varphi_{1,2}}(x)(\mu) = (\varphi_{1,2} \cdot \text{int} \mu)(x)
\]
for all \(\mu \in L^x \) is L-filter, called \(\varphi_{1,2} \)-L-neighborhood filter at \(x \) ([2]). If \(\varphi \neq F \subseteq P(X) \), then the \(\varphi_{1,2} \)-L-neighborhood filter at \(F \) will be denoted by \(\mathcal{N}_{\varphi_{1,2}}(F) \) and it will be defined by:
\[
\mathcal{N}_{\varphi_{1,2}}(F) = \bigvee_{x \in F} \mathcal{N}_{\varphi_{1,2}}(x).
\]
Since \(\mathcal{N}_{\varphi_{1,2}}(x) \) is L-filter for all \(x \in X \), then \(\mathcal{N}_{\varphi_{1,2}}(F) \) is also L-filter on \(X \). Moreover, because of \([\chi_F] = \bigvee_{x \in F} x \), then we have \(\mathcal{N}_{\varphi_{1,2}}(F) \geq [\chi_F] \) holds.

If the related \(\varphi_{1,2} \)-interior operator fulfill the axioms (11) and (12) only, then the mapping \(\mathcal{N}_{\varphi_{1,2}}(x) : L^x \to L \), which is defined by (2.3) is an L-stack ([15]), called \(\varphi_{1,2} \)-L-neighborhood stack at \(x \). Moreover, if the \(\varphi_{1,2} \)-interior operator fulfill the axioms (11), (12) and (14) such that in (14) instead of \(\rho \in L^x \) we choose \(\overline{\alpha} \), then the mapping \(\mathcal{N}_{\varphi_{1,2}}(x) : L^x \to L \), is an L-stack with the cutting property, called here \(\varphi_{1,2} \)-L-neighborhood stack with the cutting property at \(x \). Obviously, the \(\varphi_{1,2} \)-L-neighborhood filters fulfill the following axioms:
(N1) \(x \leq N_{\alpha_2}(x) \) holds for all \(x \in X \).

(N2) \(N_{\alpha_2}(x)(\mu) \leq N_{\alpha_2}(x)(\rho) \) holds for all \(\mu, \rho \in L^X \) and \(\mu \leq \rho \).

(N3) \(N_{\alpha_2}(x)(y \rightarrow N_{\alpha_2}(y)(\mu)) = N_{\alpha_2}(x)(\mu) \), for all \(x \in X \) and \(\mu \in L^X \).

Clearly, \(y \mapsto N_{\alpha_2}(y)(\mu) \) is the L-set \(\varphi_{1,2} \cdot \text{int} \mu \).

The characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \) of all \(\varphi_{1,2} \)-open L-subsets of a set \(X \) is characterized as a filter pre L-topology ([2]), that is, as a mapping \(N_{\alpha_2}(x) : X \rightarrow \mathcal{F}(X) \) such that the axioms (N1) to (N3) are fulfilled.

\(\varphi_{1,2} \)-L-neighborhoods. Let \((X, \tau) \) be a topological L-spaces and \(\varphi_1, \varphi_2 \in O_{(L^X, \tau)} \). Then for each \(\alpha \in L_0 \) and each \(x \in X \), the L-set \(\mu \in L^X \) will be called \(\varphi_{1,2} \)-L-neighborhood at \(x \) if \(\alpha \leq (\varphi_{1,2} \cdot \text{int} \mu)(x) \) holds.

Because of Proposition 2.1, the L-set \(\mu \in L^X \) is \(\varphi_{1,2} \)-L-neighborhood at \(x \) if and only if \(\mu \in \alpha\cdot \text{pr} N_{\alpha_2}(x) \), where \(N_{\alpha_2}(x) \) be given by (2.3). For each \(\alpha \in L_0 \) and each \(x \in X \) let \(N_\alpha(x) = \{ \mu \in L^X : \alpha \leq (\varphi_{1,2} \cdot \text{int} \mu)(x) \} \), then the family \((N_\alpha(x))_{\alpha \in L_0} \) is the large valued L-filter base of \(N_{\alpha_2}(x) \).

\(\varphi_{1,2} \)-L-convergence. Let a topological L-spaces \((X, \tau) \) be fixed and \(\varphi_1, \varphi_2 \in O_{(L^X, \tau)} \). If \(x \) is a point in the characterized L-space \((X, \varphi_{1,2} \cdot \text{int}) \), \(F \subseteq X \) and \(\mathcal{M} \) is L-filter on \(X \). Then \(\mathcal{M} \) is said to be \(\varphi_{1,2} \)-L-convergence ([2]) to \(x \) and written \(\mathcal{M} \xrightarrow{\varphi_{1,2} \cdot \text{int}} x \), provided \(\mathcal{M} \) is finer than the \(\varphi_{1,2} \) -neighborhood filter \(N_{\alpha_2}(x) \). Moreover, \(\mathcal{M} \) is said to be \(\varphi_{1,2} \)-convergence to \(F \) and written \(\mathcal{M} \xrightarrow{\varphi_{1,2} \cdot \text{int}} F \), provided \(\mathcal{M} \) is finer than the \(\varphi_{1,2} \)-L-neighborhood filter \(N_{\alpha_2}(F) \).

\(\varphi_{1,2} \)-closure L-sets. Let a topological L-space \((X, \tau) \) be fixed and \(\varphi_1, \varphi_2 \in O_{(L^X, \tau)} \). The \(\varphi_{1,2} \)-closure of the L-set \(\mu : X \rightarrow L \) is the mapping \(\varphi_{1,2} \cdot \text{cl} \mu : X \rightarrow L \) defined by:

\[
(\varphi_{1,2} \cdot \text{cl} \mu)(x) = \bigvee_{\mu \in N_{\alpha_2}(x)} \mathcal{M}(\mu)
\]

for all \(x \in X \). The L-filter \(\mathcal{M} \) my have additional properties, e.g, we may assume that is homogeneous or even that is ultra. Obviously, \(\varphi_{1,2} \cdot \text{cl} \mu \geq \mu \) holds for all \(\mu \in L^X \).

\(\varphi_{1,2} \)-\(\psi_{1,2} \)-L-continuous and \(\varphi_{1,2} \)-\(\psi_{1,2} \)-L-open mappings. In the following let a topological L-spaces \((X, \tau_1) \) and \((Y, \tau_2) \) are fixed, \(\varphi_1, \varphi_2 \in O_{(L^X, \tau_1)} \) and \(\psi_1, \psi_2 \in O_{(L^Y, \tau_2)} \). The mapping \(f : (X, \varphi_{1,2} \cdot \text{int}) \rightarrow (Y, \psi_{1,2} \cdot \text{int}) \) is said to be \(\varphi_{1,2} \)-\(\psi_{1,2} \)-L-continuous ([2]) if and only if

\[
(\psi_{1,2} \cdot \text{cl} \eta) \circ f \leq \varphi_{1,2} \cdot \text{int} (\eta \circ f)
\]

holds for all \(\eta \in L^Y \). If an order reversing involution \(\alpha \mapsto \alpha' \) of \(L \) is given, then we have that \(f \) is \(\varphi_{1,2} \)-\(\psi_{1,2} \)-L-continuous if and only if \(\varphi_{1,2} \cdot \text{cl} (\eta \circ f) \leq (\psi_{1,2} \cdot \text{cl} \eta) \circ f \) for all \(\eta \in L^Y \), where \(\varphi_{1,2} \cdot \text{cl} \) and \(\psi_{1,2} \cdot \text{cl} \) are the closure operators related to \(\varphi_{1,2} \cdot \text{int} \) and \(\psi_{1,2} \cdot \text{int} \), respectively. Obviously if \(f \) is \(\varphi_{1,2} \)-\(\psi_{1,2} \)-L-continuity mapping, then the inverse mapping \(f^{-1} : (Y, \psi_{1,2} \cdot \text{int}) \rightarrow (X, \varphi_{1,2} \cdot \text{int}) \) is
\(\psi_{1,2} \phi_{1,2} \) L-continuous mapping, that is, \((\psi_{1,2} \text{ int} \mu) \circ f^{-1} \leq \psi_{1,2} \text{ int} (\mu \circ f^{-1}) \) holds for all \(\mu \in L^X \). By means of the \(\phi_{1,2} \) L-neighborhood filter \(\mathcal{N}_{\phi_{1,2}} (x) \) of \(\phi_{1,2} \text{ int} \) at \(x \) and the \(\psi_{1,2} \) L-neighborhood filter \(\mathcal{N}_{\psi_{1,2}} (x) \) of \(\psi_{1,2} \text{ int} \) at \(x \), the \(\phi_{1,2} \psi_{1,2} \) L-continuity of \(f \) is also characterized as follows:

A mapping \(f : (X , \phi_{1,2} \text{ int}) \rightarrow (Y , \psi_{1,2} \text{ int}) \) is \(\phi_{1,2} \psi_{1,2} \) L-continuous if for each \(x \in X \) the inequality

\[
\mathcal{N}_{\psi_{1,2}} (f (x)) \supseteq \mathcal{F}_f (\mathcal{N}_{\phi_{1,2}} (x))
\]

holds. Obviously, in the case of \(L = \{0,1\} \), \(\phi_1 = \psi_1 = \text{ int} \), \(\phi_2 = 1_{L^X} \) and \(\psi_2 = 1_{L^X} \), the \(\phi_{1,2} \psi_{1,2} \) L-continuity of \(f \) coincides with the usual L-continuity.

Proposition 2.3 [2] Let \(f : (X , \phi_{1,2} \text{ int}) \rightarrow (Y , \psi_{1,2} \text{ int}) \) be a mapping between the characterized L-spaces \((X , \phi_{1,2} \text{ int}) \) and \((Y , \psi_{1,2} \text{ int}) \). Then the following are equivalent:

1. \(f \) is \(\phi_{1,2} \psi_{1,2} \) L-continuous.
2. For each \(\phi_{1,2} \) L-filter \(\mathcal{M} \) on \(X \) and each \(x \in X \) such that \(\mathcal{M} \rightarrow_{\phi_{1,2} \text{ int}} x \) we have \(\mathcal{F}_f (\mathcal{M}) \rightarrow_{\psi_{1,2} \text{ int}} f (x) \).
3. For each \(x \in X \), \(\alpha \in L_0 \) and \(\psi_{1,2} \alpha \) L-neighborhood \(\eta \) at \(f (x) \), we have \(\eta \circ f \) is an \(\phi_{1,2} \alpha \) L-neighborhood at \(x \).
4. \(f^{-1}(\eta) \in \beta_{\phi_{1,2} \text{ int}} \) \(\forall \eta \in \beta_{\psi_{1,2} \text{ int}} \), where \(\beta_{\phi_{1,2} \text{ int}} \) and \(\beta_{\psi_{1,2} \text{ int}} \) are the bases of \((X , \phi_{1,2} \text{ int}) \) and \((Y , \psi_{1,2} \text{ int}) \), respectively.

We will denote by **CRL-Sp, SCRL-Sp** and **CR-Sp** to the categories of all characterized L-spaces, stratified characterized L-spaces and the ordinary characterized spaces with the \(\phi_{1,2} \psi_{1,2} \) L-continuity and \(\phi_{1,2} \psi_{1,2} \) \(-\) continuity as a morphisms between them, respectively. The objects in these categories are characterized L-spaces, stratified characterized L-spaces and characterizat spaces will be denoted by \((X , \phi_{1,2} \text{ int}) \), \((X , \phi_{1,2} \text{ int}^S) \) and \((X , \phi_{1,2} \text{ int}_\alpha) \), respectively.

The mapping \(f : (X , \phi_{1,2} \text{ int}) \rightarrow (Y , \psi_{1,2} \text{ int}) \) is said to be \(\phi_{1,2} \psi_{1,2} \) L-open if and only if

\[
f \circ (\phi_{1,2} \text{ int} \mu) \circ f \leq \psi_{1,2} \text{ int} (f \circ \mu)
\]

holds for all \(\mu \in L^X \). If an order reversing involution \(\alpha \mapsto \alpha' \) of \(L \) is given, then we have that \(f \) is \(\phi_{1,2} \psi_{1,2} \) L-open if and only if \(\phi_{1,2} \text{ cl} (f \circ \mu) \leq f \circ (\psi_{1,2} \text{ cl} \mu) \) for all \(\mu \in L^X \). The mapping \(f : (X , \phi_{1,2} \text{ int}) \rightarrow (Y , \psi_{1,2} \text{ int}) \) is said to be \(\phi_{1,2} \psi_{1,2} \) L-homeomorphism if and only if it is bijective \(\phi_{1,2} \psi_{1,2} \) L-continuous and \(\phi_{1,2} \psi_{1,2} \) L-open mapping.

Proposition 2.4 [1] Let \(f : (X , \phi_{1,2} \text{ int}) \rightarrow (Y , \psi_{1,2} \text{ int}) \) be a mapping between the characterized L-spaces \((X , \phi_{1,2} \text{ int}) \) and \((Y , \psi_{1,2} \text{ int}) \). Then the following are equivalent:

1. \(f \) is \(\phi_{1,2} \psi_{1,2} \) L-open.
2. For each \(\phi_{1,2} \) L-filter \(\mathcal{N} \) on \(Y \) and each \(y \in Y \) such that \(\mathcal{N} \rightarrow_{\phi_{1,2} \text{ int}} y \) we have \(\mathcal{F}_f (\mathcal{N}) \rightarrow_{\psi_{1,2} \text{ int}} f^{-1}(y) \), where \(\mathcal{F}_f (\mathcal{N}) \) is the preimage of \(\mathcal{N} \).
3. For each \(y \in Y \), \(\alpha \in L_0 \) and \(\phi_{1,2} \alpha \) L-neighborhood \(\mu \) at \(f^{-1}(y) \), we have \(\mu \circ f^{-1} \) is an \(\psi_{1,2} \alpha \) L-neighborhood at \(y \).
(4) $f(\mu) \in \psi_{\phi_1,\phi_2}(Y)$ for all $\mu \in \beta_{\phi_1,\phi_2}$, where β_{ϕ_1,ϕ_2} is a base of $(X, \phi_{1,2})$.

Characterized L-topological groups. In the following let G be a multiplicative group. We denote, as usual, the identity element of G by e and the inverse of x in G by x^{-1}. Consider τ is an L-topology on G and $\phi_1, \phi_2 \in O_{(e^x, e^y)}$. Then the pair $(G, \phi_{1,2})$ will be called an characterized L-topological group ([1]) if and only if the mappings:

$$\alpha : (G \times G, \phi_{1,2}) \rightarrow (G, \phi_{1,2})$$

and

$$\beta : (G, \phi_{1,2}) \rightarrow (G, \phi_{1,2})$$

that defined by:

$$\alpha((x, y)) = x \cdot y \quad \forall (x, y) \in G \times G$$

and

$$\beta(x) = x^{-1} \quad \forall x \in G$$

are $\phi_{1,2}$ L-continuous, respectively.

If $\phi_1 = \text{int}$ and $\phi_2 = 1$, then the characterized L-topological group $(G, \phi_{1,2})$ is coincide with the L-topological group (G, τ) which is defined in [6,8]. As shown in [1], the characterized L-topological groups are characterized by an equivalent definition as will as in the following proposition:

Proposition 2.5 Let G be a multiplicative group, τ is an L-topology on G and $\phi_1, \phi_2 \in O_{(e^x, e^y)}$. Then,

$$(G, \phi_{1,2})$$

is characterized L-topological group if and only if the mapping

$$\gamma : (G \times G, \phi_{1,2}) \rightarrow (G, \phi_{1,2})$$

which is defined by:

$$\gamma(x, y) = x \cdot y^{-1} \quad \text{for all } (x, y) \in G$$

is $\phi_{1,2}$ L-continuous.

Denote by CRL-TopGrp and CR-TopGrp for the categories of all characterized L-topological groups and all characterized topological groups with all the $\phi_{1,2}$ L-continuous homeomorphisms and with all the $\phi_{1,2}$ L-continuous homomorphism as morphisms mappings between them, respectively. As shown in [1], the category CRL-TopGrp is concrete category over the category Grp of all groups.

3. Initial and final characterized L-spaces

We make at first the relation between the farness on L-sets and the finer relation between characterized spaces to define the α-level and initial characterized spaces for an L-topological space (X, τ) by means of the functors ω and ι. For an ordinary topological space (X, T), the induced characterized L-space is also introduced by using the functor ω. The functors ω and ι are extended for any complete distributive lattice L to the functors ω_L and ι_L. We further notions related to the notion of characterized L-spaces are e.g. those of characterized L-subspace, characterized product L-space, characterized quotient L-space and characterized sum L-space are investigated as special cases from the notions of initial and final characterized L-spaces. By the initial and final lefts in CRL-Sp we show that the category CRL-Sp is topological category in sense of [7,19] and it is also complete and co-complete category, that is, all limits and all co-limits in CRL-Sp exist, which of course are unique up to isomorphisms. Moreover, the category SCRL-Sp is bireflective subcategory of the category CRL-Sp and it is also topological category ([1]). Spacial cases we already described using the standard specifications, namely the characterized product and coproduct L-spaces. The latter type here is called characterized sum L-space. According to general procedure [6,12], the characterized L-subspaces together with their related inclusion mappings and the characterized quotient L-spaces together with their related canonical surjections are the equalizers and co-equalizers, respectively in CRL-Sp.

Let \((X, \tau)\) be a topological L-space and \(\varphi_1, \varphi_2 \in O_{(L^X, \tau)}\). Then the \(\alpha\)-level and the initial characterized spaces ([1]) of the characterized L-space \((X, \varphi_{1,2}.\text{int}_\alpha)\) will be denoted by \((X, \varphi_{1,2}.\text{int}_\alpha)\) and \((X, \varphi_{1,2}.\text{int}_\alpha)\), respectively where \(\varphi_{1,2}.\text{int}_\alpha\) and \(\varphi_{1,2}.\text{int}_\alpha\) are the \(\varphi_{1,2}\)-interior operators generates the two classes \((\varphi_{1,2}.OF(X))_\alpha\) and \((\varphi_{1,2}.OF(X))_\alpha\) which are given by
\[
(\varphi_{1,2}.OF(X))_\alpha = \{S_\alpha(\mu) \in P(X) : \mu \in \varphi_{1,2}.OF(X)\}
\]
\[
(\varphi_{1,2}.OF(X))_\alpha = \inf\{(\varphi_{1,2}.OF(X))_\alpha : \alpha \in L_1\},
\]
respectively, where inf is the infimum with respect to the finer relation on characterized spaces. On other hand if \((X, T)\) is ordinary topological space and \(\varphi_1, \varphi_2 \in O_{(P(X), T)}\), then the induced characterized L-space on \(X\) ([1]) will be denoted by \((X, \varphi_{1,2}.\text{int}_\alpha)\), where \(\varphi_{1,2}.\text{int}_\alpha\) is the \(\varphi_{1,2}\)-interior operator generates the class
\[
\omega(\varphi_{1,2}.O(X)) \quad \text{which is defined as follows:}
\]
\[
\omega(\varphi_{1,2}.O(X)) = \{\mu \in L^X : S_\alpha(\mu) \in \varphi_{1,2}.O(X) \text{ for all } \alpha \in L_1\}.
\]
\(\omega\) and \(i\) are functors in sense of Lowen in [17] in special case of \(L = I\). These functors extended for any completely distributive complete lattice \(L\) in [1] as follows:

Let \((X, \tau)\) be a topological L-space, \(\varphi_1, \varphi_2 \in O_{(L^X, \tau)}\) and \(\psi_1, \psi_2 \in O_{(L^X, T)}\). Then, the characterized spaces \((X, \varphi_{1,2}.\text{int}_i)\) and \((X, \varphi_{1,2}.\text{int}_o)\) are called initial characterized space and induced characterized L-space on \(X\), respectively where \(\varphi_{1,2}.\text{int}_i\) and \(\varphi_{1,2}.\text{int}_o\) are the \(\varphi_{1,2}\)-interior operators generates the classes
\[
i_L(\varphi_{1,2}.OF(X)) \quad \text{and} \quad \omega_o(\varphi_{1,2}.O(X))
\]
which are defined by the formulas:
\[
i_L(\varphi_{1,2}.OF(X)) = \inf\{\mu^{-1}(UP(\psi_{1,2}.OF(L)) : \mu \in \varphi_{1,2}.OF(X)\}
\]
and
\[
\omega_o(\varphi_{1,2}.O(X)) = \langle C(\langle(X, \varphi_{1,2}.O(X)), (L, UP(\psi_{1,2}.OF(L))\rangle) \rangle
\]
\(C(\langle(X, \varphi_{1,2}.O(X)), (L, UP(\psi_{1,2}.OF(L))\rangle)\) is the set of all \(\varphi_{1,2}\)-continuous mappings between \((X, \varphi_{1,2}.O(X))\) and \((L, UP(\psi_{1,2}.OF(L))\), where \(UP(\psi_{1,2}.OF(L))\) is the upper \(\psi_{1,2}\)-open L-set generated by the set \(L \downarrow \downarrow (a)\) for \(\downarrow (a) = \{x \in L : x \leq a\}\). If \(\varphi_1 = \text{int}\) and \(\varphi_2 = 1_{L^X}\), then the initial characterized space \((X, \varphi_{1,2}.\text{int}_i)\) and the induced characterized L-space \((X, \varphi_{1,2}.\text{int}_o)\) are coincide with the initial topological space \((X, i(\tau))\) and the induced topological L-space \((X, \omega(\tau))\) which are defined in [8]. As shown in [1], the functors \(\omega_o : \text{CR - Sp} \to \text{CRL - Sp}\), \(i_L : \text{CRL - Sp} \to \text{CR - Sp}\) and \(S_2 : \text{CRL - Sp} \to \text{SCRL - Sp}\) are concrete functors. Moreover, the category \(\text{SCRL - Sp}\) is bireflective subcategory of the category \(\text{CRL - Sp}\) and for each object \((X, \varphi_{1,2}.\text{int})\) of \(\text{CRL - Sp}\) the \(\varphi_{1,2}\)-L-continuous mapping \(1_X\) from the stratification \((X, \varphi_{1,2}.\text{int}^S)\) of \((X, \varphi_{1,2}.\text{int})\) into \((X, \varphi_{1,2}.\text{int})\) is bi-coreflection of \((X, \varphi_{1,2}.\text{int}).\)

Initial characterized L-spaces. Consider a family of characterized L-spaces \((\langle X_i, \psi_{1,2}.\text{int}_i \rangle)_{i \in I}\) and for each \(i \in I\), let \(f_i : X_i \to X_i\) be a mapping from \(X_i\) into \(X_i\). By an initial characterized L-space ([1]) of the family \((\langle X_i, \psi_{1,2}.\text{int}_i \rangle)_{i \in I}\) with respect to \((f_i)_{i \in I}\), we mean the characterized L-space \((X, \varphi_{1,2}.\text{int})\) for which the following conditions are fulfilled:

1. All the mappings \(f_i : (X, \varphi_{1,2}.\text{int}) \to (X_i, \psi_{1,2}.\text{int}_i)\) are \(\varphi_{1,2}\)-\(\psi_{1,2}\)-L-continuous.
(2) For an characterized L-space \((Y, \delta_{1,2}, \text{int})\) and a mapping \(f : Y \rightarrow X\), the mapping
\(f : (Y, \delta_{1,2}, \text{int}) \rightarrow (X, \phi_{1,2}, \text{int})\) is \(L\)-continuous if all the mappings
\(f_i \circ f : (Y, \delta_{1,2}, \text{int}) \rightarrow (X, \psi_{1,2,\text{int}_i})\) are \(L\)-continuous for all \(i \in I\).

The initial characterized L-space \((X, \phi_{1,2}, \text{int})\) for a family \(((X_i, \psi_{1,2,\text{int}_i}))_{i \in I}\) of characterized L-spaces with respect to the family \((f_i)_{i \in I}\) of mappings exists and will be given by
\[\phi_{1,2,\text{int}} \mu = \bigvee_{\mu_i \leq \mu, s \in \mathcal{C}_l} (\psi_{1,2,\text{int}_i} \circ f_i)\]
for all \(\mu \in L^X\).

As shown in [1], the initial lefts and then the initial characterized L-spaces are uniquely exist in the category CRL-Sp. Hence, the category CRL-Sp is topological category over the category SET of all sets. Moreover, the initial characterized L-space \((X, \phi_{1,2}, \text{int})\) for a family of characterized L-spaces \(((X_i, \psi_{1,2,\text{int}_i}))_{i \in I}\) with respect to a family of mappings \((f_i)_{i \in I}\) is stratified if and only if \((X_i, \psi_{1,2,\text{int}_i})\) is stratified for some \(i \in I\). In the following we consider some special cases for the initial characterized L-spaces.

Characterized L-subspaces. Let \(A\) be non-empty subset of a characterized L-space \((X, \phi_{1,2}, \text{int})\) and
\(i_A : A \rightarrow X\) be the inclusion mapping of \(A\) into \(X\). Then the mapping \(\phi_{1,2,\text{int}_A} : L^A \rightarrow L^X\) which is defined by:
\[\phi_{1,2,\text{int}_A} \sigma = \bigvee_{\mu \leq \sigma} (\phi_{1,2,\text{int}} \circ i_A)\]
for all \(\sigma \in L^A\) is initial \(\phi_{1,2,\text{int}}\)-operator of \(\phi_{1,2,\text{int}}\) with respect to the inclusion mapping \(i_A : A \rightarrow X\), called the induced \(\phi_{1,2,\text{int}}\)-operator of \(\phi_{1,2,\text{int}}\) on the subset \(A\) of \(X\) and \((A, \phi_{1,2,\text{int}_A})\) is initial characterized L-space called characterized L-subspace \((1)\) of the characterized L-space \((X, \phi_{1,2,\text{int}})\). As shown in [1], the characterized L-subspaces \((A, \phi_{1,2,\text{int}_A})\) of the characterized L-spaces \((X, \phi_{1,2,\text{int}})\) always exist and the related initial \(\phi_{1,2,\text{int}}\)-operator of them is given by (3.2). Moreover, \((A, \phi_{1,2,\text{int}_A})\) is stratified if \((X, \phi_{1,2,\text{int}})\) is stratified.

Characterized product L-spaces. Assume that for each \(i \in I\), \((X_i, \psi_{1,2,\text{int}_i})\) be the characterized L-space of \(\psi_{1,2}\)-open \(L\)-subset of \(X_i\). Let \(X\) be the cartesian product \(\prod_{i \in I} X_i\) of the family \((X_i)_{i \in I}\) and \(P : X \rightarrow X_i\) is the related projection. Then the mapping \(\phi_{1,2,\text{int}} : L^X \rightarrow L^X\) which is defined by:
\[\phi_{1,2,\text{int}} \mu = \bigvee_{\mu \leq \mu_i} (\psi_{1,2,\text{int}_i} \circ P)\]
for all \(\mu \in L^X\) is initial \(\phi_{1,2,\text{int}}\)-operator of \(\psi_{1,2,\text{int}}\) with respect to the projection mapping \(P : X \rightarrow X_i\), called the \(\phi_{1,2}\)-product operator of the \(\psi_{1,2}\)-interior operators \(\psi_{1,2,\text{int}_i}\) and \((X, \phi_{1,2,\text{int}})\) is initial characterized L-space called characterized product L-space \((1)\) of the characterized L-spaces \((X_i, \psi_{1,2,\text{int}_i})\) with respect to the family \((P : X \rightarrow X_i)_{i \in I}\) of projections and will be denoted by \((\prod_{i \in I} X_i, \prod_{i \in I} \psi_{1,2,\text{int}_i})\).

Initial lefts in CRL-Sp. For the general notion of initial left we refer the standard books of category theory which include the categorical topology, e.g. [7,19]. The notion of initial left is meant here with respect to the forgetful functor of CRL-Sp to SET. It can be defined as follows:
The family of one and the same domain \((f_i : (X, \varphi_{1,2}, \text{int}) \rightarrow (X_{i1}, \psi_{1,2}, \text{int}))_{i \in I} \), where I is any classe in the category CRL-Sp is called initial left ([1]) of the family \((f_i : X \rightarrow X_{i1}, \psi_{1,2}, \text{int})_{i \in I} \) provided for any characterized L-space \((Y, \sigma_{1,2}, \text{int})\) of the \(\sigma_{1,2} \)-open L-subsets of the set \(Y \), the mapping \(f : (Y, \sigma_{1,2}, \text{int}) \rightarrow (X, \varphi_{1,2}, \text{int}) \) is \(\sigma_{1,2} \varphi_{1,2} \) L-continuous if all the compositions \(f_i \circ f : (Y, \sigma_{1,2}, \text{int}) \rightarrow (X_{i1}, \psi_{1,2}, \text{int}) \) are \(\sigma_{1,2} \psi_{1,2} \) L-continuous. As shown in [1], for each family \((f_i : X \rightarrow X_{i1}, \psi_{1,2}, \text{int})_{i \in I} \) of the mappings \(f_i : X \rightarrow X_{i1} \) and of \(\psi_{1,2} \)-interior operators \(\psi_{1,2}, \text{int}_i \) defined on the co-domains \(X_{i1} \) of these mappings, the family \((f_i : (X, \varphi_{1,2}, \text{int}) \rightarrow (X_{i1}, \psi_{1,2}, \text{int}))_{i \in I} \) is initial left, where the initial \(\varphi_{1,2} \)-interior operator \(\varphi_{1,2}, \text{int} \) defined by (3.1).

Lemma 3.1 [1] Let \((X, \varphi_{1,2}, \text{int})\) and \((Y, \sigma_{1,2}, \text{int})\) are the characterized product L-spaces for the families \(((X, \varphi_{1,2}, \text{int}))_{i \in I} \) and \(((Y, \sigma_{1,2}, \text{int}))_{i \in I} \) of characterized L-spaces. Then for each \(i \in I \), the mapping \(f_i : (X, \varphi_{1,2}, \text{int}) \rightarrow (Y, \sigma_{1,2}, \text{int}) \) is \(\sigma_{1,2} \psi_{1,2} \) L-continuous (resp. \(\sigma_{1,2} \delta_{1,2} \) L-open) mapping, and then the product mapping \(f = \prod f_i : (X, \varphi_{1,2}, \text{int}) \rightarrow (Y, \sigma_{1,2}, \text{int}) \) is defined by \(f((x_i)_{i \in I}) = (f_i(x_i))_{i \in I} \) for all \((x_i)_{i \in I} \in X = \prod X_i \) is \(\varphi_{1,2} \sigma_{1,2} \) L-continuous (resp. \(\varphi_{1,2} \sigma_{1,2} \) L-open).

Final characterized L-spaces. It is well-known (cf.e.g [7,19]) that in a topological category all final lifts uniquely exists and hence also all final structures exist. They are dually defined. In case of the category CRL-Sp the final structures can easily be given, as is shown in the following:

Let \(I \) be a class and for each \(i \in I \), let \((X_i, \psi_{1,2}, \text{int}_i)\) be a characterized L-space of \(\psi_{1,2} \)-open L-subsets of \(X_i \) and \(f_i : X_i \rightarrow X \) be a mapping from \(X_i \) into a set \(X \). By a final characterized L-space of \((X_i, \psi_{1,2}, \text{int}_i)_{i \in I} \) with respect to the family \((f_i)_{i \in I} \) of mappings we mean the characterized L-space \((X, \varphi_{1,2}, \text{int})\) for which the following conditions are fulfilled:

1. All the mappings \(f_i : (X_i, \psi_{1,2}, \text{int}_i) \rightarrow (X, \varphi_{1,2}, \text{int}) \) are \(\psi_{1,2} \varphi_{1,2} \) L-continuous.
2. For an characterized L-space \((Y, \delta_{1,2}, \text{int})\) and a mapping \(f : X \rightarrow Y \), the mapping \(f : (X, \varphi_{1,2}, \text{int}) \rightarrow (Y, \delta_{1,2}, \text{int}) \) is \(\varphi_{1,2} \delta_{1,2} \) L-continuous if all the mappings \(f \circ f_i : (X_i, \psi_{1,2}, \text{int}_i) \rightarrow (Y, \delta_{1,2}, \text{int}) \) are \(\psi_{1,2} \delta_{1,2} \) L-continuous for all \(i \in I \),

\[
\begin{align*}
X &\xrightarrow{f} Y \\
f_i &\uparrow
\end{align*}
\]

(See Fig. 3.1)

In the following proposition we show that the final characterized L-space \((X, \varphi_{1,2}, \text{int})\) for a family \(((X_i, \psi_{1,2}, \text{int}_i))_{i \in I} \) of characterized L-spaces with respect to the family \((f_i)_{i \in I} \) of mappings exists and will be defined.

Proposition 3.1 The final characterized L-space \((X, \varphi_{1,2}, \text{int})\) for the family of characterized L-spaces \(((X_i, \psi_{1,2}, \text{int}_i))_{i \in I} \) with respect to the family of mappings \((f_i)_{i \in I} \) always exists and it is given by:

\[
(\varphi_{1,2}, \text{int}) \mu(x) = \bigwedge_{x_i \in f_i^{-1} \{x\}, i \in I} \psi_{1,2}, \text{int}_i (\mu \circ f_i)(x_i) \wedge \mu(x)
\]

(3.4)
for all \(x \in X \) and \(\mu \in L^X \).

Proof. Let \(\varphi_{1,2}.\text{int} \) be the operator defined (3.4). For each \(x \in X \), \(\mu \in L^X \) and for all \(i \in I \) with \(x_i \in f_i^{-1}(\{x\}) \) we have \(\bigwedge_{x_i, \sigma f_i^{-1}(\{x\}), i, d} \psi_{1,2}.\text{int} \left(\mu \circ f_i \right)(x_i) \wedge \mu(x) \geq \mu(x) \) and therefore \(\varphi_{1,2}.\text{int} \mu \leq \mu \). Hence, \(\varphi_{1,2}.\text{int} \) fulfills condition (1). For condition (12), let \(\mu, \eta \in L^X \) with \(\mu \leq \eta \), then \((\mu \circ f_i)(x) \geq (\eta \circ f_i)(x) \) and therefore \(\left(\varphi_{1,2}.\text{int} \mu \right)(x) \geq \bigwedge_{x_i, \sigma f_i^{-1}(\{x\}), i, d} \psi_{1,2}.\text{int} \left(\mu \circ f_i \right)(x_i) \wedge \mu(x) \geq \left(\varphi_{1,2}.\text{int} \eta \right)(x) \) holds for all \(x \in X \). Thus, condition (12) is fulfilled. For all \(x \in X \), \(i \in I \) with \(x_i \in f_i^{-1}(\{x\}) \) we have \(\bigwedge_{x_i, \sigma f_i^{-1}(\{x\}), i, d} \psi_{1,2}.\text{int} \left(\bar{T} \circ f_i \right)(x_i) \wedge \bar{T}(x) \leq \bar{T}(x) \) and therefore \(\varphi_{1,2}.\text{int} \bar{T} = \bar{T} \). Hence, \(\varphi_{1,2}.\text{int} \) fulfill condition (13). Now, let \(\mu, \eta \in L^X \) and \(x \in X \), \(i \in I \) such that \(x_i \in f_i^{-1}(\{x\}) \). Then from the distributives of \(\text{L} \), we have that
\[
\left(\varphi_{1,2}.\text{int} \mu \wedge \varphi_{1,2}.\text{int} \eta \right)(x) = \bigwedge_{x_i, \sigma f_i^{-1}(\{x\}), i, d} \left(\psi_{1,2}.\text{int} \left(\mu \circ f_i \right) \wedge \psi_{1,2}.\text{int} \left(\eta \circ f_i \right) \right)(x_i) \wedge \left(\mu \wedge \eta \right)(x) \\
\geq \bigwedge_{x_i, \sigma f_i^{-1}(\{x\}), i, d} \psi_{1,2}.\text{int} \left(\left(\mu \wedge \eta \right) \circ f_i \right)(x_i) \wedge \left(\mu \wedge \eta \right)(x) \\
= \varphi_{1,2}.\text{int} \left(\mu \wedge \eta \right)(x).
\]
Thus, \(\varphi_{1,2}.\text{int} \) fulfills condition (14). Clearly, \(\varphi_{1,2}.\text{int} \) is idempotent, that is, condition (15) is fulfilled. Hence, \((X, \mathcal{P}_{1,2}.\text{int}) \) is characterized \(\text{L}-\text{space} \). Since for all \(i \in I \) with \(f_i^{-1}(\{x\}) = \emptyset \), we have \(\left(\varphi_{1,2}.\text{int} \right)(x) = \mu(x) \). Then, because of (3.4) for each \(i \in I \) and \(x_i \in X_i \), we have that the inequality \(\left(\varphi_{1,2}.\text{int} \mu \right)(f_i(x_i)) \geq \psi_{1,2}.\text{int} \left(\mu \circ f_i \right)(x_i) \) holds and therefore, the inequality \(\left(\varphi_{1,2}.\text{int} \mu \right) \circ f_i \leq \psi_{1,2}.\text{int} \left(\mu \circ f_i \right) \) is also holds. Hence, for each \(i \in I \) all the mappings \(f_i : (X_i, \psi_{1,2}.\text{int}_i) \rightarrow (X, \varphi_{1,2}.\text{int}) \) are \(\varphi_{1,2}. \mathcal{P}_{1,2}. \text{int} \)-continuous. Thus, condition (1) is fulfilled.

Now, let \((Y, \delta_{1,2}.\text{int}) \) is a characterized \(\text{L}-\text{space} \) and \(f : X \rightarrow Y \) be a mapping such that the mappings \(f \circ f_i : (X, \psi_{1,2}.\text{int}_i) \rightarrow (Y, \delta_{1,2}.\text{int}) \) are \(\psi_{1,2}. \delta_{1,2}. \text{int} \)-continuous for all \(i \in I \). Then, we have that \(\left(\delta_{1,2}.\text{int} \mu \right) \circ \left(f \circ f_i \right) \leq \psi_{1,2}.\text{int} \left(\mu \circ f \circ f_i \right) \) holds for all \(\mu \in L^Y \) and because of (3.4) we have that \(\left(\delta_{1,2}.\text{int} \mu \right)(f(x)) = \bigwedge_{x_i, \sigma f_i^{-1}(\{x_i\}), i, d} \psi_{1,2}.\text{int} \left(\mu \circ f \circ f_i \right)(x_i) \wedge \mu(f(x)) \geq \bigwedge_{x_i, \sigma f_i^{-1}(\{x_i\}), i, d} \psi_{1,2}.\text{int} \left(\mu \circ f \circ f_i \right)(x_i) \wedge \mu(f(x)) \) is also holds for all \(\mu \in L^Y \). Hence, the mapping \(f : (X, \mathcal{P}_{1,2}.\text{int}) \rightarrow (Y, \delta_{1,2}.\text{int}) \) is \(\mathcal{P}_{1,2}. \delta_{1,2}. \text{L} \)-continuous, that is, condition (2) is also fulfilled.

Consequently, \((X, \mathcal{P}_{1,2}.\text{int}) \) is final characterized \(\text{L}-\text{space} \) of the family \(\{(X_i, \psi_{1,2}.\text{int}_i)\}_{i \in I} \) of characterized \(\text{L}-\text{spaces} \) with respect to \((f_i)_{i \in I} \).

Because of Proposition 3.1, all the final lefts and all the final characterized \(\text{L}-\text{spaces} \) are uniquely exist in the category \(\text{CRL-Sp} \) and hence \(\text{CRL-Sp} \) is a topological category over the category \(\text{SET} \) of all sets.

Proposition 3.2 The final characterized \(\text{L}-\text{space} \) \((X, \mathcal{P}_{1,2}.\text{int}) \) for the family of characterized \(\text{L}-\text{spaces} \) \(\{(X_i, \psi_{1,2}.\text{int}_i)\}_{i \in I} \) with respect to the family of mappings \((f_i)_{i \in I} \) is stratified if and only if \((X_i, \psi_{1,2}.\text{int}_i) \) is stratified for some \(i \in I \).
Proof. Assume that \((X_j, \psi_{1,2}, \text{int}_{j})\) is stratified for \(j \in I\). Then because of (3.4), we have that
\[
(\varphi_{1,2}, \text{int}_{\alpha})(x) = \bigwedge_{x \in f^{-1}(\{\alpha\}) \in \mathcal{A}} \psi_{1,2}(\alpha_j \circ f_j)(x_j) \wedge \alpha(x) \leq \alpha(x)
\]
holds for all \(\alpha \in L\), where \(\varphi_{1,2}, \text{int}_{\alpha} = \overline{\alpha}\) are the constant mappings on \(X\) and \(X_j\) have value \(\alpha\) and \(\alpha_j\), respectively. Hence, \(\varphi_{1,2}, \text{int}_{\alpha} = \overline{\alpha}\) for all \(\alpha \in L\) and therefore \((X, \varphi_{1,2}, \text{int}_{\alpha})\) is stratified.

Conversely, let \((X', \varphi_{1,2}, \text{int}_{\alpha})\) is stratified, that is \(\varphi_{1,2}, \text{int}_{\alpha} = \overline{\alpha}\) for all \(\alpha \in L\). Then
\[
\bigwedge_{x \in f^{-1}(\{\alpha\}) \in \mathcal{A}} \psi_{1,2}(\alpha_j \circ f_j)(x_j) \wedge \alpha(x) = \overline{\alpha}(x)
\]
holds for all \(x \in X\) and \(i \in I\). Hence, there is \(j \in I\) such that
\[
\psi_{1,2}(\alpha_j)(x_j) \leq \overline{\alpha}(x) \quad \text{and} \quad \alpha(x) \leq (\alpha_j \circ f_j)(x_j) \leq \alpha_j(x_j),
\]
therefore \(\psi_{1,2}(\alpha_j) = \alpha_j\) for some \(j \in I\). Hence, \((X', \varphi_{1,2}, \text{int}_{\alpha})\) is stratified for \(j \in I\). \(\square\)

In the following we consider the notions of a characterized quotient pre L-space and a characterized sum L-space as special cases from the final characterized L-spaces.

Characterized quotient pre L-spaces. Let \(A\) be non-empty L-subset of the characterized L-space \((X, \varphi_{1,2}, \text{int}_{\alpha})\) and \(f : X \to A\) is a surjective mapping of \(X\) into \(A\). Then the mapping
\[
\varphi_{1,2}, \text{int}_{f} : L^A \to L^A
\]
which is defined by:
\[
(\varphi_{1,2}, \text{int}_{\alpha})(\mu) = \bigwedge_{x \in f^{-1}(\{\alpha\}) \in \mathcal{A}} \varphi_{1,2}(\mu \circ f)(x)
\]
for all \(\alpha \in A\) and \(\mu \in L^A\) is final pre \(\varphi_{1,2}, \text{int}_{\alpha}\) -interior operator of \(\varphi_{1,2}, \text{int}_{\alpha}\) with respect to the mapping \(f : X \to A\) which is not idempotent, called the quotient pre \(\varphi_{1,2}, \text{int}_{\alpha}\) -interior operator of \(\varphi_{1,2}, \text{int}_{\alpha}\) on the L-subset \(A\) and \((A, \varphi_{1,2}, \text{int}_{f})\) is a final characterized L-space which is not idempotent called characterized quotient pre L-space of the characterized L-space \((X, \varphi_{1,2}, \text{int}_{\alpha})\).

Note that in this case \(\varphi_{1,2}, \text{int}_{\alpha}\) is idempotent but \(\varphi_{1,2}, \text{int}_{f}\) need not be. Even in the classical case of \(L = [0,1]\) with choices \(\varphi_{1,2} = \text{int} \text{ and } \varphi_{1,2} = 1_{x^*}\), we have that \(\varphi_{1,2}, \text{int}_{\alpha}\) is up to an identification the usual topology and \(\varphi_{1,2}, \text{int}_{f}\) is up to an identification the usual pretopology which need not be idempotent. An example is given in [12] (p.234).

Proposition 3.3 Let \(A\) be non-empty subset of a characterized L-space \((X, \varphi_{1,2}, \text{int}_{\alpha})\). Then the characterized quotient pre L-space \((A, \varphi_{1,2}, \text{int}_{f})\) of \((X, \varphi_{1,2}, \text{int}_{\alpha})\) always exists and the quotient \(\varphi_{1,2}, \text{int}_{f}\) -interior operator \(\varphi_{1,2}, \text{int}_{f}\) is given by (3.5). If \((X, \varphi_{1,2}, \text{int}_{f})\) is stratified, then \((A, \varphi_{1,2}, \text{int}_{f})\) also is.

Proof. Let \(a \in A\) and \(\mu \in L^A\) such that \(x \in f^{-1}(\{a\})\) holds, then
\[
\bigwedge_{x \in f^{-1}(\{a\}) \in \mathcal{A}} \varphi_{1,2}(\mu \circ f)(x) \geq \mu(a)
\]
is also holds and therefore \(\varphi_{1,2}, \text{int}_{\alpha}(\mu) \leq \mu\) holds for all \(\mu \in L^A\). Hence, \(\varphi_{1,2}, \text{int}_{f}\) fulfills condition (11).

For condition (12), let \(a \in A\) and \(\mu, \eta \in L^A\) with \(\mu \leq \eta\) and \(x \in f^{-1}(\{a\})\), then because of (3.5) we have
\[
(\varphi_{1,2}, \text{int}_{f})(\mu) = \bigwedge_{x \in f^{-1}(\{a\}) \in \mathcal{A}} \varphi_{1,2}(\mu \circ f)(x) \geq \bigwedge_{x \in f^{-1}(\{a\}) \in \mathcal{A}} \varphi_{1,2}(\eta \circ f)(x) = (\varphi_{1,2}, \text{int}_{f})(\eta)(a),
\]
Thus, condition (12) is fulfilled. Since \(\varphi_{1,2}, \text{int}_{f}(\mu) \leq \mu\) for all \(\mu \in L^X\), then we have
\[
(\varphi_{1,2}, \text{int}_{f})(\mu)(a) = \bigwedge_{x \in f^{-1}(\{a\}) \in \mathcal{A}} \varphi_{1,2}(\mu \circ f)(x) \leq \bigwedge_{x \in f^{-1}(\{a\}) \in \mathcal{A}} (\overline{\mu} \circ f)(x) = \overline{\mu}(a).
\]
Hence, \(\varphi_{1,2}, \text{int}_{f}\) fulfills condition (13). Now, let \(\mu, \eta \in L^A\) and \(a \in A\) such that \(x \in f^{-1}(\{a\})\). Then from the distributives of L and (3.5), we have that
(\varphi_{1,2}.\text{int}_f \mu \land \varphi_{1,2}.\text{int}_f \eta)(a) = \bigwedge_{x \in f^{-1}(a)} (\varphi_{1,2}.\text{int}(\mu \circ f)(x) \land (\varphi_{1,2}.\text{int}(\eta \circ f)(x))) \\
\geq \bigwedge_{x \in f^{-1}(a)} (\varphi_{1,2}.\text{int}(\mu \land \eta \circ f)(x)) = \varphi_{1,2}.\text{int}_f (\mu \land \eta)(a).

Since \varphi_{1,2}.\text{int}_f is isotone, it follows \varphi_{1,2}.\text{int}_f \mu \land \varphi_{1,2}.\text{int}_f \eta = \varphi_{1,2}.\text{int}_f (\mu \land \eta). Thus, condition (I4) is also fulfilled. Hence, \((A, \varphi_{1,2}.\text{int}_f)\) is characterized pre-L-space. Since for all \(a \in A\) and \(\mu \in L^A\), we have \((\varphi_{1,2}.\text{int}_f \mu \circ f)(a) \geq \varphi_{1,2}.\text{int}(\mu \circ f)(a)\), then the mapping \(f : (X, \varphi_{1,2}.\text{int}) \rightarrow (A, \varphi_{1,2}.\text{int}_f)\) is \(\varphi_{1,2} \varphi_{1,2}\) L-continuous. Hence, condition (1) is fulfilled.

Now, let \((Y, \delta_{1,2}.\text{int})\) is a characterized pre-L-space and \(g : A \rightarrow Y\) is a surjective mapping such that the composition \(f \circ g : (A, \varphi_{1,2}.\text{int}_f) \rightarrow (Y, \delta_{1,2}.\text{int})\) is \(\varphi_{1,2} \delta_{1,2}\) L-continuous mapping. Then, the inequality
\((\delta_{1,2}.\text{int}_f \mu \circ (f \circ g) \leq \varphi_{1,2}.\text{int}_f (\mu \circ f \circ g)\) holds for all \(\mu \in L^Y\), therefore because of (3.5), the inequality
\((\varphi_{1,2}.\text{int}_f \sigma f)(a) = \bigwedge_{x \in f^{-1}(a)} (\varphi_{1,2}.\text{int}(\sigma \circ g \circ f)(x)) \geq \bigwedge_{x \in f^{-1}(a)} (\delta_{1,2}.\text{int}(\mu \circ g \circ f)(x)) \geq \delta_{1,2}.\text{int}_f (\sigma \circ f)(a)\) is also holds for all \(a \in A\) and \(\sigma \in L^A\). Hence, the mapping
\(f : (Y, \delta_{1,2}.\text{int}) \rightarrow (A, \varphi_{1,2}.\text{int}_f)\) is \(\delta_{1,2} \varphi_{1,2}\) L-continuous, that is, condition (2) is also fulfilled. Consequently, \((A, \varphi_{1,2}.\text{int}_f)\) is initial characterized pre-L-space.

Finally, let \((X, \varphi_{1,2}.\text{int}_f)\) is stratified. Then, \(\varphi_{1,2}.\text{int}_f \tilde{\alpha} = \tilde{\alpha}\) for all \(\alpha \in L\) and therefore
\(\bigwedge_{x \in f^{-1}(\alpha)} (\varphi_{1,2}.\text{int} \tilde{\alpha})(x) = \tilde{\alpha}(a)\), where \(\tilde{\alpha}\) and \(\tilde{\alpha}\) are the constant mappings on \(X\) and \(A\) respectively. Because of (3.5), we have \(\varphi_{1,2}.\text{int}_f \tilde{\alpha} = \tilde{\alpha}\) for all \(\alpha \in L\). Hence, \((A, \varphi_{1,2}.\text{int}_f)\) is stratified. \(\Box\)

Characterized sum L-spaces. Assume that for each \(i \in I\), \((X_i, \psi_{1,2}.\text{int}_i)\) be an characterized L-space of \(\psi_{1,2}\)-open \(L\) -subset of \(X_i\). Let \(X\) be the disjoint union \(\bigcup_{i \in d} (X_i \times \{i\})\) of the family \((X_i)_{i \in d}\) and for each \(i \in I\), let \(e_i : X_i \rightarrow X\) be the canonical injection of \(X_i\) into \(X\) given by \(e_i(x_i) = (x_i, i)\). Then the mapping \(\varphi_{1,2}.\text{int} : L^X \rightarrow L^X\) which is defined by:

\[(\varphi_{1,2}.\text{int} \mu)(a, i) = \psi_{1,2}.\text{int}_i (\mu \circ e_i)(a)\]
(3.6)

for all \(i \in I\), \(a \in X_i\) and \(\mu \in L^X\) is final \(\varphi_{1,2}\)-interior operator of \((\psi_{1,2}.\text{int}_i)_{i \in d}\) with respect to the canonical injection \((e_i)_{i \in d}\). \(\varphi_{1,2}.\text{int}\) will be called a sum \(\varphi_{1,2}\)-interior operator of the \(\psi_{1,2}\)-interior operators \((\psi_{1,2}.\text{int}_i)_{i \in d}\) and will be denoted by \(\sum_{i \in d} \psi_{1,2}.\text{int}_i\). The pair \((X, \varphi_{1,2}.\text{int})\) is final characterized L-space called characterized sum L-space of the characterized L-spaces \((X_i, \psi_{1,2}.\text{int}_i)\) with respect to the family of canonical injection \((e_i)_{i \in d}\) and will be denoted by \(\sum_{i \in d} (X_i, \psi_{1,2}.\text{int}_i)\) or \((X, \varphi_{1,2}.\text{int})\) for shorts.

Proposition 3.4 For each \(i \in I\), let \((X_i, \psi_{1,2}.\text{int}_i)\) be a characterized L-space of \(\psi_{1,2}\)-open \(L\) -subset of \(X_i\). Then the characterized sum L-prespace \(\sum_{i \in d} (X_i, \psi_{1,2}.\text{int}_i)\) of \((X_i, \psi_{1,2}.\text{int}_i)\) always exists and the sum \(\varphi_{1,2}\)-interior operator \(\varphi_{1,2}.\text{int}\) is given by (3.6). If \((X_i, \psi_{1,2}.\text{int}_i)\) stratified for each \(i \in I\), then the characterized sum L-space \(\sum_{i \in d} (X_i, \psi_{1,2}.\text{int}_i)\) is also stratified.
Proof. The first part is similar to that of Proposition 3.3. For the second part, let $i \in I$, $a \in X_i$ and $\alpha \in L^X$, where X is the disjoint union $\bigsqcup_{i \in I} (X_i \times \{i\})$ of the family $\{(X_i)_{i \in I}\}$. Because of (3.6) we have
\[(\varphi_{i,2} \cdot \text{int} \overline{\alpha})(a,i) = \psi_{i,1,2} \cdot \text{int}_1 (\overline{\alpha} \cdot e_i)(a) = (\psi_{i,2} \cdot \text{int}_1 \overline{\alpha})(a,i) = \overline{\alpha}(a,i) \text{ and therefore } \varphi_{i,2} \cdot \text{int} \overline{\alpha} = \overline{\alpha}.
\]
Hence, $\sum_{i \in I} \left((X_i, \psi_{i,1,2}) \right)^{\text{int}}_{i \in I}$ is stratified. □

Final lefts in CRL-Sp. For the general notion of initial and final left we refer the standard books of category theory which include the categoriological topology, e.g. [6,23]. The notion of final left is meant here with respect to the forgetful functor of CRL-Sp to SET. It can be defined as follows:
The family of one and the same co-domain $\left(f_{i,1} : (X_i, \psi_{i,1,2}) \rightarrow (X, \varphi_{i,1,2})\right)_{i \in I}$, where I is any close of morphisms in the category CRL-Sp is called final left of the family $\left(f_{i,1} : (X_i, \psi_{i,1,2}) \rightarrow (Y, \varphi_{i,1,2})\right)_{i \in I}$ provided for any characterized L-space $\left(Y, \sigma_{i,1,2}\right)$ of $\sigma_{i,1,2}$-open subsets of Y the mapping $f : (X, \varphi_{i,1,2}) \rightarrow (Y, \sigma_{i,1,2})$ is $\varphi_{i,1,2} \cdot \sigma_{i,1,2}$ L-continuous if all the compositions mappings $f \circ f_{i,1} : (X_i, \psi_{i,1,2}) \rightarrow (Y, \sigma_{i,1,2})$ are $\psi_{i,1,2} \cdot \sigma_{i,1,2}$ L-continuous.

Proposition 3.7 For each family $\left(f_{i,1} : (X_i, \psi_{i,1,2}) \rightarrow (Y, \sigma_{i,1,2})\right)_{i \in I}$ consisting of the mappings $f_{i,1} : X_i \rightarrow Y$ and of the $\psi_{i,1,2}$-interior operators $\psi_{i,1,2} \cdot \text{int}_{i,1}$. on the domains X_i of these mappings, the family $\left(f_{i,1} : (X_i, \psi_{i,1,2} \cdot \text{int}_{i,1} \rightarrow (X, \varphi_{i,1,2} \cdot \text{int}_{i,1})\right)_{i \in I}$ with the final $\varphi_{i,1,2}$ -interior operator $\varphi_{i,1,2} \cdot \text{int} : L^X \rightarrow L^X$ of $\left(\psi_{i,1,2} \cdot \text{int}_{i,1}\right)_{i \in I}$ with respect to $\left(f_{i,1}\right)_{i \in I}$ defined by (3.4) is a final left.

Proof. Let a characterized L-space $\left(Y, \sigma_{i,1,2}\right)$ of $\sigma_{i,1,2}$-open subsets of Y and a mapping $f : X \rightarrow Y$ be fixed. If all the mappings $f \circ f_{i,1} : (X_i, \psi_{i,1,2}) \rightarrow (Y, \sigma_{i,1,2})$ are $\psi_{i,1,2} \cdot \sigma_{i,1,2}$ L-continuous, that is, if $\left(\psi_{i,1,2} \cdot \text{int} \eta \right) \circ (f \circ f_{i,1}) \leq \psi_{i,1,2} \cdot \text{int}_{i,1}(\eta \circ f \circ f_{i,1})$ holds for all $\eta \in L^Y$, then because of (3.4), we have that $\left(\psi_{i,1,2} \cdot \text{int} \eta \right)(f(x)) = \bigwedge_{x \in f_{i,1}^{-1}(\{x\})} \psi_{i,1,2} \cdot \text{int}_{i,1}(\eta \circ f)(f_{i,1}(x)) \leq \psi_{i,1,2} \cdot \text{int} \eta \circ f(x) \leq \psi_{i,1,2} \cdot \text{int} \eta \circ f \circ f_{i,1}(x) \leq \psi_{i,1,2} \cdot \text{int} \eta \circ f \circ f_{i,1}(x)$ holds for all $x \in X$ and $\eta \in L^Y$. Hence, the mapping $f : (X, \varphi_{i,1,2}) \rightarrow (Y, \sigma_{i,1,2})$ is $\varphi_{i,1,2} \cdot \sigma_{i,1,2}$ L-continuous. Thus, the family $\left(f_{i,1} : (X_i, \varphi_{i,1,2}) \rightarrow (X_i, \psi_{i,1,2} \cdot \text{int}_{i,1})\right)_{i \in I}$ is a final left of $\left(\psi_{i,1,2} \cdot \text{int}_{i,1}\right)_{i \in I}$ with respect to $\left(f_{i,1}\right)_{i \in I}$. □

4. Initial characterized L-topological groups

In this section we show that the category CRL-TopGrp of all characterized L-topological groups is topological category over the category Grp of all groups and hence all initial characterized L-topological groups exist and can be characterized.

Consider a family of characterized L-topological groups $\left((G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})\right)_{i \in I}$ and for each $i \in I$, let $f_{i,1} : G \rightarrow G_i$ be a homomorphism mapping from a group G into the groups G_i. Then for any characterized L-topological group $(G, \varphi_{i,1,2} \cdot \text{int}_G)$, the family $\left(f_{i,1} : (G, \varphi_{i,1,2} \cdot \text{int}_G) \rightarrow (G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})\right)_{i \in I}$ is called initial lifts for the family $\left(f_{i,1} : G \rightarrow G_i, \psi_{i,1,2} \cdot \text{int}_{G_i}\right)_{i \in I}$ in the category CRL-TopGrp provided the following conditions are fulfilled:
(1) All the mappings $f_i : (G, \varphi_{1,2, \text{int}_G}) \to (G_i, \psi_{1,2, \text{int}_{G_i}})$ are $\varphi_{1,2, \text{L-int}}$-continuous homomorphism for all $i \in I$.

(2) For an characterized L-topological group $(H, \delta_{1,2, \text{int}_H})$ and a mapping $f : H \to G$, the mapping $f : (H, \delta_{1,2, \text{int}_H}) \to (G, \varphi_{1,2, \text{int}_G})$ is $\delta_{1,2, \text{L}}$-continuous homomorphism if and only if all the composition mappings $f_i \circ f : (H, \delta_{1,2, \text{int}_H}) \to (G_i, \psi_{1,2, \text{int}_{G_i}})$ are $\delta_{1,2, \text{L}}$-continuous.

Hence, by an initial characterized L-topological group we mean the characterized L-topological group which provides the initial lifts in the category CRL-TopGrp.

To prove that all initial lifts and all initial characterized L-topological groups exist in the category CRL-TopGrp we need to prove at first that in case of $f_i : G \to G_i$ is an injective homomorphism for each $i \in I$, and $\varphi_{1,2, \text{int}_G}$ is $\varphi_{1,2, \text{L-int}}$-operator for an initial characterized L-topology on a group G of $(\psi_{1,2, \text{int}_{G_i}})_{i \in I}$, we get that $(G, \varphi_{1,2, \text{int}_G})$ is also characterized L-topological group. Now, we consider the case of I being a singleton.

Proposition 4.1 Let $(H, \delta_{1,2, \text{int}_H})$ be a characterized L-topological group and let $f : G \to H$ be an injective homomorphism from a group G into H. Then the initial characterized L-space $(G, f^{-1}(\delta_{1,2, \text{int}_H}))$ of $(H, \delta_{1,2, \text{int}_H})$ with respect to f is characterized L-topological group.

Proof. Let at first $\gamma_G : (G \times G, f^{-1}(\delta_{1,2, \text{int}_H}) \times f^{-1}(\delta_{1,2, \text{int}_H})) \to (G, f^{-1}(\delta_{1,2, \text{int}_H}))$ and $\gamma_H : (H \times H, \delta_{1,2, \text{int}_H} \times \delta_{1,2, \text{int}_H}) \to (H, \delta_{1,2, \text{int}_H})$ are the mappings defined by (2.8) and let $\eta \in \beta_{f^{-1}(\delta_{1,2, \text{int}_H})}$, where $\beta_{f^{-1}(\delta_{1,2, \text{int}_H})}$ is the base of $(G, f^{-1}(\delta_{1,2, \text{int}_H}))$ that generated by $f^{-1}(\delta_{1,2, \text{int}_H})$. Then, $\eta = f^{-1}(\rho)$ for some $\rho \in \beta_{\delta_{1,2, \text{int}_H}}$. Since $(H, \delta_{1,2, \text{int}_H})$ is characterized L-topological group, then γ_H is $\delta_{1,2}$-$\delta_{1,2}$-L-continuous and therefore from Proposition 2.3, we have $\gamma_H^{-1}(\rho) \in \beta_{\delta_{1,2, \text{int}_H} \times \delta_{1,2, \text{int}_H}}$. Because of f is an injective homomorphism, then for all $x, y \in G$ we have

$$
\gamma_G^{-1}(x, y) = (\rho \circ f \circ \gamma_G)(x, y) = (\rho \circ f)(x, y^2) = \rho(f(x)f(y)) = \gamma_H(f(x), f(y))
$$

that is, $\gamma_G^{-1}(x, y) = (f \times f)^{-1}(\gamma_H^{-1}(\rho))$. Since $(G, f^{-1}(\delta_{1,2, \text{int}_H}))$ is initial characterized L-space of $(H, \delta_{1,2, \text{int}_H})$ with respect to the mapping f, then $f : (G, f^{-1}(\delta_{1,2, \text{int}_H})) \to (H, \delta_{1,2, \text{int}_H})$ is $\delta_{1,2}$-$\delta_{1,2}$-L-continuous and from Lemma 3.1, it follows that the product mapping $f \times f : G \times G \to H \times H$ is $\delta_{1,2}$-$\delta_{1,2}$-L-continuous. Therefore, $(f \times f)^{-1}(\gamma_H^{-1}(\rho)) \in \beta_{f^{-1}(\delta_{1,2, \text{int}_H}) \times f^{-1}(\delta_{1,2, \text{int}_H})}$ and $\beta_{f^{-1}(\delta_{1,2, \text{int}_H}) \times f^{-1}(\delta_{1,2, \text{int}_H})} \subseteq (f \times f)^{-1}(\gamma_H^{-1}(\rho))$. Hence, $(f \times f)^{-1}(\gamma_H^{-1}(\rho)) \in \beta_{f^{-1}(\delta_{1,2, \text{int}_H}) \times f^{-1}(\delta_{1,2, \text{int}_H})}$, and therefore from Proposition 2.3 it follows that γ_G is $\delta_{1,2}$-$\delta_{1,2}$-L-continuous. Hence, because of Proposition 2.5, $(G, f^{-1}(\delta_{1,2, \text{int}_H}))$ is characterized L-topological group. □
Generally we consider the case of I is any class consists of more than one elements.

Proposition 4.2 Let $\left((G_i, \psi_{1,2}.\text{int}_{G_i})\right)_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G \rightarrow G_i$ be an injective homomorphism from a group G into a group G_i. If $(G, \varphi_{1,2}.\text{int}_G)$ is the initial characterized L-space of the family $\left((G_i, \psi_{1,2}.\text{int}_{G_i})\right)_{i \in I}$ with respect to the family $\left(f_i\right)_{i \in I}$, then $(G, \varphi_{1,2}.\text{int}_G)$ is characterized L-topological group.

Proof. Let at first the mappings $\gamma^G_i : (G \times G \times \varphi_{1,2}.\text{int}_G \times \varphi_{1,2}.\text{int}_G) \rightarrow (G, \varphi_{1,2}.\text{int}_G)$ and $\gamma_{G_i} : (G_i \times G_i \times \psi_{1,2}.\text{int}_{G_i} \times \psi_{1,2}.\text{int}_{G_i}) \rightarrow (G_i, \psi_{1,2}.\text{int}_{G_i})$ are defined by (2.8). Since $f_i \circ \gamma^G_i = \gamma_{G_i} \circ (f_i \times f_i)$, f_i and γ_{G_i} are $\varphi_{1,2} \psi_{1,2} L$-continuous and $\varphi_{1,2} \psi_{1,2} L$-continuous, respectively, then $f_i \circ \gamma^G_i$ is $\varphi_{1,2} \psi_{1,2} L$-continuous. Because of condition of the initial lifts in the category CRL-Top, γ^G_i is $\varphi_{1,2} \psi_{1,2} L$-continuous and hence $(G, \varphi_{1,2}.\text{int}_G)$ is characterized L-topological group.

In the following proposition we show that the initial lefts and then the initial characterized L-topological groups uniquely exist in the category CRL-TopGrp. Hence, the category CRL-TopGrp is topological category over the category Grp of all groups.

Proposition 4.3 Let $\left((G_i, \psi_{1,2}.\text{int}_{G_i})\right)_{i \in I}$ be a family of characterized L-topological groups and for each $i \in I$, let $f_i : G \rightarrow G_i$ be an injective homomorphism from a group G into a group G_i. If $(G, \varphi_{1,2}.\text{int}_G)$ is the initial characterized L-space of the family $\left((G_i, \psi_{1,2}.\text{int}_{G_i})\right)_{i \in I}$ with respect to the family of injective homomorphism mappings $\left(f_i\right)_{i \in I}$, then the family $\left(f_i : (G, \varphi_{1,2}.\text{int}_G) \rightarrow (G_i, \psi_{1,2}.\text{int}_{G_i})\right)_{i \in I}$ is an initial lift of the category CRL-TopGrp.

Proof. Because of Propositions 4.1 and 4.2, $(G, \varphi_{1,2}.\text{int}_G)$ is characterized L-topological group. From the definition of the initial lift in CRL-Sp, we get condition (1) from the definition of the initial lift in CRL-TopGrp is fulfilled, that is, all mappings $f_i : (G, \varphi_{1,2}.\text{int}_G) \rightarrow (G_i, \psi_{1,2}.\text{int}_{G_i})$ are $\varphi_{1,2} \psi_{1,2} L$-continuous homomorphism for all $i \in I$.

Let $(H, \delta_{1,2}.\text{int}_H)$ be a characterized L-topological group and a mapping $f : H \rightarrow G$ be a mapping. Then from the definition of the initial lift in CRL-Sp, we have that the mapping $f : (H, \delta_{1,2}.\text{int}_H) \rightarrow (G, \varphi_{1,2}.\text{int}_G)$ is $\delta_{1,2} \varphi_{1,2} L$-continuous if and only if the composition mappings $f_i \circ f : (H, \delta_{1,2}.\text{int}_H) \rightarrow (G_i, \psi_{1,2}.\text{int}_{G_i})$ are $\delta_{1,2} \psi_{1,2} L$-continuous for all $i \in I$. Now, let f is homomorphism. Since f_i is homomorphism for each $i \in I$, then $f_i \circ f$ is also homomorphism for all $i \in I$. On other hand let $f_i \circ f$ is also homomorphism for all $i \in I$. Since f_i is homomorphism for each $i \in I$, then for all $a, b \in H$ we have

$$f_i (f (a \cdot b)) = (f_i \circ f) (a \cdot b) = f_i (f (a)) \cdot f_i (f (b)) = f_i (f (a) \cdot f (b)).$$

Since f_i is injective for all $i \in I$, it follows that $f (a \cdot b) = f (a) \cdot f (b)$ for all $a, b \in H$, that is, f is homomorphism. Hence, $f : (H, \delta_{1,2}.\text{int}_H) \rightarrow (G, \varphi_{1,2}.\text{int}_G)$ is $\delta_{1,2} \varphi_{1,2} L$-continuous homomorphism if and only if all the composition mappings $f_i \circ f : (H, \delta_{1,2}.\text{int}_H) \rightarrow (G_i, \psi_{1,2}.\text{int}_{G_i})$ are $\delta_{1,2} \psi_{1,2} L$-continuous homomorphism for all $i \in I$. Thus, condition (2) from the definition of the initial lift in CRL-
is an initial lift of \((f_i : G \rightarrow G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})_{i \in I}\) in the category CRL-TopGrp. □

Because of Proposition 4.3, the characterized L-topological groups mentioned in Propositions 4.1 and 4.2 are coincide with the initial characterized L-topological groups, that is, if \(\left((G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})\right)_{i \in I}\) is a family of characterized L-topological groups and for each \(i \in I\), the mapping \(f_i : G \rightarrow G_i\) is an injective homomorphism and \((G, \varphi_{1,2} \cdot \text{int}_G)\) is the initial characterized L-space of the family \(\left((G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})\right)_{i \in I}\) with respect to the family of injective homomorphism mappings \((f_i)_{i \in I}\), then \((G, \varphi_{1,2} \cdot \text{int}_G)\) is initial characterized L-topological groups. Hence, the category CRL-TopGrp is concrete category of the category L-Top of all topological spaces and the faithful functor \(\mathcal{F} : \text{CRL-TopGrp} \rightarrow \text{L-Top}\) is isomorphism. Thus, the category CRL-TopGrp is algebraic category over the category \text{L-Top} in sense of [7].

In the following we consider some special cases for the initial characterized L-topological groups.

Characterized L-subgroups. Let \(H\) be non-empty subgroup of a characterized L-topological group \((G, \varphi_{1,2} \cdot \text{int}_G)\) and \(i_H : H \rightarrow G\) be the inclusion injective mapping of \(H\) into \(G\). Then the mapping \(\varphi_{1,2} \cdot \text{int}_H : \text{L}^H \rightarrow \text{L}^H\) which is defined by:

\[
\varphi_{1,2} \cdot \text{int}_H \sigma = \bigvee_{\mu \leq \sigma} (\varphi_{1,2} \cdot \text{int}_G \mu) \circ i_H
\]

for all \(\sigma \in \text{L}^H\) is initial \(\varphi_{1,2}\)-interior operator of \(\varphi_{1,2} \cdot \text{int}_G\) with respect to the inclusion injective mapping \(i_H : H \rightarrow G\), called an induced \(\varphi_{1,2}\)-interior operator of \(\varphi_{1,2} \cdot \text{int}_G\) on the subgroup \(H\) of \(G\) and \((H, \varphi_{1,2} \cdot \text{int}_H)\) is initial characterized L-topological group called a characterized L-subgroup of the characterized L-topological group \((G, \varphi_{1,2} \cdot \text{int}_G)\).

Proposition 4.4 Let \(H\) be non-empty subgroup of a characterized L-topological group \((G, \varphi_{1,2} \cdot \text{int}_G)\). Then the characterized L-subgroup \((H, \varphi_{1,2} \cdot \text{int}_H)\) of \((G, \varphi_{1,2} \cdot \text{int}_G)\) always exists and the initial \(\varphi_{1,2}\)-interior operator \(\varphi_{1,2} \cdot \text{int}_G\) is given by (4.1).

Proof. Immediate from Propositions 4.2 and 4.3. □

Characterized product L-topological groups. Assume that for each \(i \in I\), \((G_i, \psi_{i,1,2} \cdot \text{int}_{G_i})\) be a characterized L-topological group and \(G\) be the cartesian product \(\prod_{i \in I} G_i\) of the family \((G_i)_{i \in I}\) of groups. If \(P_i : G \rightarrow G_i\) be the related injective projection, then the mapping \(\psi_{1,2} \cdot \text{int}_G : \text{L}^G \rightarrow \text{L}^G\) defined by:

\[
\psi_{1,2} \cdot \text{int}_G \mu = \bigvee_{\mu \leq \mu' \leq \mu} (\psi_{1,2} \cdot \text{int}_{G_i} \mu') \circ P_i
\]

for all \(\mu \in \text{L}^G\) is initial \(\psi_{1,2}\)-interior operator of \(\psi_{1,2} \cdot \text{int}_G\) with respect to the injective projection mapping \(P_i : G \rightarrow G_i\), called product \(\varphi_{1,2}\)-interior operator of the \(\psi_{1,2}\)-interior operators \(\psi_{1,2} \cdot \text{int}_{G_i}\) and \((G, \varphi_{1,2} \cdot \text{int}_G)\) is initial characterized L-topological group called characterized product L-topological group of the characterized L-topological groups \((G_i, \psi_{1,2} \cdot \text{int}_{G_i})\) with respect to the family \((P_i : G \rightarrow G_i)_{i \in I}\) of injective projections and will be denoted by \((\prod_{i \in I} G_i, \prod_{i \in I} \psi_{1,2} \cdot \text{int}_{G_i})\).
5. Final characterized L-topological groups

In this section we show that the final characterized L-topological group exists and it can be the final characterized L-spaces. Since the concrete category CRL-TopGrp of all characterized L-topological groups is topological category over the category Grp of all groups, then all final lifts also uniquely exist. This, even mean that also all final characterized L-topological groups exist.

Consider $(G_i :\psi_{i,2}.\text{int}_{G_i})_{i\in I}$ be a family of characterized L-topological groups and $(f_i : G_i \rightarrow G_j)_{i\in I}$ be a family of homomorphism mappings from the groups G_i into the group G_j, indexed by the class I. Then for any characterized L-space $(G, \varphi_{1,2}.\text{int}_G)$, the family $(f_i : (G_i :\psi_{i,2}.\text{int}_{G_i}) \rightarrow (G, \varphi_{1,2}.\text{int}_G))_{i\in I}$ is called final lifts for the family $(f_i : G_i \rightarrow G_j :\psi_{i,2}.\text{int}_{G_i})_{i\in I}$ in the category CRL-TopGrp, provided $(G, \varphi_{1,2}.\text{int}_G)$ is characterized L-topological group which fulfills the following conditions:

1. All the mappings $f_i : (G_i :\psi_{i,2}.\text{int}_{G_i}) \rightarrow (G, \varphi_{1,2}.\text{int}_G)$ are $\psi_{i,2} \varphi_{1,2}$ L-continuous homomorphism for all $i \in I$.

2. For an characterized L-topological group $(H, \delta_{1,2}.\text{int}_H)$ and a mapping $f : G \rightarrow H$, the mapping $f : (G, \varphi_{1,2}.\text{int}_G) \rightarrow (H, \delta_{1,2}.\text{int}_H)$ is $\varphi_{1,2} \delta_{1,2}$ L-continuous homomorphism if and only if all the composition mappings $f \circ f_i : (G_i :\psi_{i,2}.\text{int}_{G_i}) \rightarrow (H, \delta_{1,2}.\text{int}_H)$ are $\psi_{i,2} \delta_{1,2}$ L-continuous homomorphism for all $i \in I$, (See Fig. 5.1)

\[\begin{array}{c}
G_i \\
\uparrow f_i \\
\downarrow f \\
G_j \\
\end{array} \]

Fig.5.1

Hence, by a final characterized L-topological group we mean the characterized L-topological group which provides the final lifts in the category CRL-TopGrp.

To prove that all final lifts and all final characterized L-topological groups exist in the category CRL-TopGrp we need to prove that in case of $f_i : G_i \rightarrow G$ is an injective homomorphism for each $i \in I$, and $\varphi_{1,2}.\text{int}_G$ is $\varphi_{1,2}$-interior operator for an final characterized L-topology on a group G of $(\psi_{1,2}.\text{int}_{G_i})_{i\in I}$ we get that $(G, \varphi_{1,2}.\text{int}_G)$ is also characterized L-topological group. To prove these results we need at first the following lemma.

Lemma 5.1 If $f : (G, \varphi_{1,2}.\text{int}_G) \rightarrow (H, f (\varphi_{1,2}.\text{int}_G))$ is surjective homomorphism mapping from the characterized L-topological groups $(G, \varphi_{1,2}.\text{int}_G)$ to the group H equipped with the final characterized L-topology generated by $(\varphi_{1,2}.\text{int}_G)$ as a base with respect to f, then f is $\varphi_{1,2} \varphi_{1,2}$ L-open.

Proof. Immediate from Proposition 2.4. □

Now, we consider the case of I being a singleton.

Proposition 5.1 Let $(G, \varphi_{1,2}.\text{int}_G)$ be a characterized L-topological group and let $f : G \rightarrow H$ be a homomorphism from a group G onto a group H. Then the final characterized L-space $(H, f (\varphi_{1,2}.\text{int}_G))$ of $(G, \varphi_{1,2}.\text{int}_G)$ with respect to f is characterized L-topological group.

Proof. Let at first $\gamma_H : (H \times H, f (\varphi_{1,2}.\text{int}_G) \times f (\varphi_{1,2}.\text{int}_G)) \rightarrow (H, f (\varphi_{1,2}.\text{int}_G))$ and $\gamma_G : (G \times G, \varphi_{1,2}.\text{int}_G \times \varphi_{1,2}.\text{int}_G) \rightarrow (G, \varphi_{1,2}.\text{int}_G)$ are the mappings defined by (2.8) and let
\(\mu \in \beta_{i}((\varphi_{1,2}\int G)) \), where \(\beta_{i}((\varphi_{1,2}\int G)) \) is the base of \((H,f(\varphi_{1,2}\int G))\) which is generated by \(f(\varphi_{1,2}\int G) \), then \(f^{-1}(\mu) \in \beta_{i}((\varphi_{1,2}\int G)) \). Since \((G,\varphi_{1,2}\int G)\) is characterized L-topological group, then \(\gamma_{G} \) is \(\varphi_{1,2} \)-L-continuous for all \(L \)-open and therefore from Proposition 2.3, we have \(\gamma_{G}^{-1}(f^{-1}(\mu)) \in \beta_{i}((\varphi_{1,2}\int G)) \). Because of Lemma 5.1, we have that the mapping \(f:(G,\varphi_{1,2}\int G)) \to (H,f(\varphi_{1,2}\int G)) \) is \(\varphi_{1,2} \)-L-open for all \(L \)-open, then the family \(\gamma_{G}^{-1}(f^{-1}(\mu)) \). Consider \(\gamma_{G}^{-1}(f^{-1}(\mu)) \) is \(\beta_{i}((\varphi_{1,2}\int G)) \) and \(\varphi_{1,2} \)-L-continuous and consequently \((H,f(\varphi_{1,2}\int G)) \) is characterized L-topological group. □

Generally, we consider the case of \(I \) is any class consists of more than one element. Then we have the following result.

Proposition 5.2 Let \((G_{i},\varphi_{1,2}\int G_{i}))_{i \in I} \) be a family of characterized L-topological groups and for each \(i \in I \), let \(f_{i}:G_{i} \to G \) be a homomorphism from a group \(G \) onto a group \(G_{i} \). If \((G,\varphi_{1,2}\int G)\) is the initial characterized L-space of the family \((G_{i},\varphi_{1,2}\int G_{i}))_{i \in I} \) with respect to the family \((f_{i})_{i \in I} \), then \((G,\varphi_{1,2}\int G)\) is characterized L-topological group.

Proof. Let \(\gamma_{G_{i}}:(G_{i} \times G,\varphi_{1,2}\int G_{i}\times\varphi_{1,2}\int G_{i}) \to (G,\varphi_{1,2}\int G_{i}) \) is a mapping defined by (2.8) and \(\mu \in \beta_{i}((\varphi_{1,2}\int G_{i})) \). Since \(f_{i}:(G_{i},\varphi_{1,2}\int G_{i}) \to (G,\varphi_{1,2}\int G_{i}) \) is \(\varphi_{1,2} \)-L-continuous for all \(i \in I \), then \(f_{i}^{-1}(\mu) \in \beta_{i}((\varphi_{1,2}\int G_{i})) \) for all \(i \in I \) and because of \(\gamma_{G_{i}} \) is \(\varphi_{1,2} \)-L-continuous for all \(i \in I \), then we have \(\gamma_{G_{i}}^{-1}(f_{i}^{-1}(\mu)) \in \beta_{i}((\varphi_{1,2}\int G_{i})) \). Consider \(\gamma_{G}:(G \times G,\varphi_{1,2}\int G \times \varphi_{1,2}\int G) \to (G,\varphi_{1,2}\int G) \) is a mapping defined by (2.8), then \(\gamma_{G}^{-1}(\mu) = (f_{i} \times f_{i})(\gamma_{G_{i}}^{-1}(f_{i}^{-1}(\mu))) \) and by a similar way to the proof of Proposition 5.1, we have the product mapping \(f_{i} \times f_{i} \) is \(\varphi_{1,2} \)-L-open for all \(i \in I \). Hence, \(\gamma_{G}^{-1}(\mu) \in \beta_{i}((\varphi_{1,2}\int G)) \) and therefore \(\gamma_{G} \) is \(\varphi_{1,2} \)-L-continuous and consequently \((G,\varphi_{1,2}\int G)\) is characterized L-topological group. □

In the following proposition we show that the final lifts and then the final characterized L-topological groups uniquely exist in the concrete category CRL-TopGrp, that is, the characterized L-topological groups mentioned in Propositions 5.1 and 5.2 fulfills the conditions of the final lifts in the category CRL-TopGrp.

Proposition 5.3 Let \((G_{i},\varphi_{1,2}\int G_{i}))_{i \in I} \) be a family of characterized L-topological groups and for each \(i \in I \), let \(f_{i}:G_{i} \to G \) be a surjective homomorphism from the groups \(G_{i} \) into a group \(G \). If \((G,\varphi_{1,2}\int G)\) is the final characterized L-space of the family \((G_{i},\varphi_{1,2}\int G_{i}))_{i \in I} \) with respect to the family of surjective homomorphism mappings \((f_{i})_{i \in I} \), then the family \((f_{i}:(G_{i},\varphi_{1,2}\int G_{i}) \to (G,\varphi_{1,2}\int G))_{i \in I} \) is a final lift of \((f_{i}:G_{i} \to G,\varphi_{1,2}\int G)_{i \in I} \) in the category CRL-TopGrp.

Proof. The proof goes similarly by using Propositions 5.1 and 5.2 with the properties of the final lifts in the category as in case of Proposition 4.3. □
Because of Proposition 5.3, the characterized L-topological groups mentioned in Propositions 5.1 and 5.2 are coincide with the final characterized L-topological groups, that is, if \((G_i, \psi_{1,2}, \text{int}_{G_i})\) \(_{i \in I}\) is a family of characterized L-topological groups and for each \(i \in I\), the mapping \(f_i : G_i \rightarrow G\) is an surjective homomorphism and \((G, \varphi_{1,2}, \text{int}_G)\) is the final characterized L-space of the family \((G_i, \psi_{1,2}, \text{int}_{G_i})\) \(_{i \in I}\) with respect to the family of surjective homomorphism mappings \((f_i)_{i \in I}\), then \((G, \varphi_{1,2}, \text{int}_G)\) is final characterized L-topological groups. Hence, the category \(\text{CRL-TopGrp}\) is co-concrete category of the category \(\text{L-Top}\) of all topological spaces and the faithful functor \(\sigma^*: \text{L-Top} \rightarrow \text{CRL-TopGrp}\) is isomorphism.

In the following we consider some special cases for the final characterized L-topological groups.

Characterized L-topological quotient groups. The characterized L-topological group is special final characterized L-topological group when the mapping \(f : G \rightarrow H\) replaced by the canonical mapping \(h : G \rightarrow G / N\), where \(N\) is normal subgroup the group \(G\).

Let \(N\) be normal subgroup of the characterized L-topological group \((G, \varphi_{1,2}, \text{int}_G)\) and \(G / N\) is the corresponding quotient group. If \(h : G \rightarrow G / N\) is the canonical homomorphism mapping defined by: \(h(x) = x N\) for all \(x \in G\), then \((G / N, h(\varphi_{1,2}, \text{int}_G))\) is final characterized L-topological group called characterized L-topological quotient group of the characterized L-topological group \((G, \varphi_{1,2}, \text{int}_G)\).

Proposition 5.4 Let \((G, \varphi_{1,2}, \text{int}_G)\) be a characterized L-topological group and \(N\) is a normal subgroup of \(G\). If \(G / N\) is the corresponding quotient group, then the canonical surjective homomorphism \(h : (G, \varphi_{1,2}, \text{int}_G) \rightarrow (G / N, h(\varphi_{1,2}, \text{int}_G))\) which is defined as \(h(x) = x N\) for all \(x \in G\) is \(\varphi_{1,2}\) L-open.

Proof. Follows directly from Lemma 5.1. \(\Box\)

In the following proposition we give the relation between characterized L-topological quotient groups and the characterized product L-topological groups.

Proposition 5.5 Let \(I\) be a class and for each \(i \in I\), let \((G_i, \psi_{1,2}, \text{int}_{G_i})\) be a characterized L-topological group and \(N_i\) be a normal subgroup of \(G_i\). If \(G = \prod_{i \in I} G_i\) and \(N = \prod_{i \in I} N_i\) are the related products of the least two families \((G_i)_{i \in I}\) and \((N_i)_{i \in I}\), respectively, then the isomorphism mapping \(f : (G / N, h(\prod_{i \in I} \psi_{1,2}, \text{int}_{G_i})) \rightarrow (\prod_{i \in I} (G_i / N_i), (\prod_{i \in I} h(\psi_{1,2}, \text{int}_{G_i})))\) is \(\psi_{1,2}\) L-homeomorphism, where \(h : (G_i, \prod_{i \in I} \psi_{1,2}, \text{int}_{G_i}) \rightarrow (G_i / N_i, h(\psi_{1,2}, \text{int}_{G_i}))\) and \(h_i : (G_i, \psi_{1,2}, \text{int}_{G_i}) \rightarrow (G_i / N_i, h(\psi_{1,2}, \text{int}_{G_i}))\) are the related canonical surjective homomorphism’s.

Proof. Because of the definition of characterized product L-topological groups and the characterized L-topological quotient groups we have that \((G / N, h(\prod_{i \in I} \psi_{1,2}, \text{int}_{G_i}))\) and \((\prod_{i \in I} (G_i / N_i), (\prod_{i \in I} h(\psi_{1,2}, \text{int}_{G_i})))\) are characterized L-topological groups. Since \(h_i\) is \(\psi_{1,2}\) L-continuous for all \(i \in I\), then from Lemma 3.1 it follows that the product mapping \(\prod_{i \in I} h_i : (G_i, h(\prod_{i \in I} \psi_{1,2}, \text{int}_{G_i})) \rightarrow (\prod_{i \in I} (G_i / N_i), (\prod_{i \in I} h(\psi_{1,2}, \text{int}_{G_i})))\) is \(\psi_{1,2}\) L-continuous. Hence,
f(μ) ∈ \(\prod_{i \in I} (h_i \cdot (\nu_{1,2} \cdot \text{int}_{\nu_i})) \) implies \(h^{-1}(f^{-1}(\mu)) = (\prod_{i \in I} h_i)^{-1}(\mu) \in \prod_{i \in I} \nu_{1,2} \cdot \text{int}_{\nu_i} \). Because of Proposition 5.3, \(h \) is \(\psi_{1,2} \psi_{1,2} \) L-open and surjective mapping, therefore \(f^{-1}(\mu) \in \prod_{i \in I} \nu_{1,2} \cdot \text{int}_{\nu_i} \). Then, \(f \) is \(\psi_{1,2} \psi_{1,2} \) L-continuous isomorphism, that is, \(f \) is bijective \(\psi_{1,2} \psi_{1,2} \) L-continuous.

Now, let \(\eta \in \prod_{i \in I} \nu_{1,2} \cdot \text{int}_{\nu_i} \). Since \(h \) is \(\psi_{1,2} \psi_{1,2} \) L-continuous, then \(h^{-1}(\eta) \in \prod_{i \in I} \nu_{1,2} \cdot \text{int}_{\nu_i} \). Because of \(\prod_{i \in I} h_i \) is the product of \(\psi_{1,2} \psi_{1,2} \) L-open mappings, then Lemma 3.1 implies that \(\prod_{i \in I} h_i \) is \(\psi_{1,2} \psi_{1,2} \) L-open mapping. Therefore, \(f(\eta) = (\prod_{i \in I} h_i)(h^{-1}(\eta)) \in \prod_{i \in I} (h_i \cdot (\nu_{1,2} \cdot \text{int}_{\nu_i})) \), that is, \(f \) is \(\psi_{1,2} \psi_{1,2} \) L-open. Consequently, \(f \) is \(\psi_{1,2} \psi_{1,2} \) L-homeomorphism. □

6. Conclusion

In this paper, we introduced and studied the notions of final characterized L-spaces and initial and final characterized L-topological groups. The properties of such notions are deeply studied. By the notion of final characterized L-spaces, the notions of characterized quotient pre L-spaces and characterized sum L-spaces are introduced and studied. We show that all the final lefts and all the final characterized L-spaces are uniquely exist in the category CRL-Sp and hence CRL-Sp is topological category over the category SET of all sets. The characterized L-subspaces together with their related inclusion mappings and the characterized quotient pre L-spaces together with their related canonical surjection are the equalizers and co-equalizers, respectively in CRL-Sp. Moreover, we show that the initial and final lefts and then the initial and final characterized L-topological groups uniquely exist in the category CRL-TopGrp. Hence, the category CRL-TopGrp is topological category over the category Grp of all groups. By the notion of initial and final characterized L-topological groups, the notions of characterized L-subgroups, characterized product L-topological groups and characterized L-topological quotient groups are introduced and studied. However, we show that the category CRL-TopGrp is concrete and co-concrete category of the category L-Top of all topological L-spaces and that the faithful functors \(\mathcal{F} : \text{CRL} \rightarrow \text{L-Top} \) and \(\mathcal{F}^*: \text{L-Top} \rightarrow \text{CRL} \) are isomorphism’s. Thus, the category CRL-TopGrp is algebraic and co-algebraic category over the category L-Top in sense of [7]. Many new special classes for the final characterized L-spaces, initial characterized L-topological groups, final characterized L-topological groups, characterized product L-topological groups and characterized L-topological quotient groups are listed in Table (1).
<table>
<thead>
<tr>
<th></th>
<th>Operations</th>
<th>Final characterized L-spaces</th>
<th>Initial characterized L-topol. Groups</th>
<th>Final characterized L-topol. Groups</th>
<th>Characterized L-topol. groups</th>
<th>Characterized L-topol. Quotient groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\varphi_1 = \text{int}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final L-top. space [18]</td>
<td>Initial L-topol. Group [6,8]</td>
<td>Final L-topol. Group [6,8]</td>
<td>Product L-topol. Group [6,8]</td>
<td>L-topol. Quotient group [6,8]</td>
</tr>
<tr>
<td>2</td>
<td>$\varphi_1 = \text{int}$ $\varphi_2 = \text{cl}$</td>
<td>Final θ L-space</td>
<td>Initial θ L-topol. Group</td>
<td>Final θ L-topol. Group</td>
<td>θ - product L-topol. Group</td>
<td>θ L-topol. Quotient group</td>
</tr>
<tr>
<td>3</td>
<td>$\varphi_1 = \text{int}$ $\varphi_2 = \text{int} \circ \text{cl}$</td>
<td>Final δ L-space</td>
<td>Initial δ L-topol. Group</td>
<td>Final δ L-topol. Group</td>
<td>δ - product L-topol. Group</td>
<td>δ L-topol. Quotient group</td>
</tr>
<tr>
<td>4</td>
<td>$\varphi_1 = \text{cl} \circ \text{int}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final semi L-space</td>
<td>Initial semi L-topol. Group</td>
<td>Final semi L-topol. Group</td>
<td>Semi-product L-topol. Group</td>
<td>Semi L-topol. Quotient group</td>
</tr>
<tr>
<td>5</td>
<td>$\varphi_1 = \text{cl} \circ \text{int}$ $\varphi_2 = \text{cl}$</td>
<td>Final (θS) L-space</td>
<td>Initial (θS) L-topol. Group</td>
<td>Final (θS) L-topol. Group</td>
<td>(θS) - product L-topol. Group</td>
<td>(θS) L-topol. Quotient group</td>
</tr>
<tr>
<td>6</td>
<td>$\varphi_1 = \text{cl} \circ \text{int}$ $\varphi_2 = \text{int} \circ \text{cl}$</td>
<td>Final (δS) L-space</td>
<td>Initial (δS) L-topol. Group</td>
<td>Final (δS) L-topol. Group</td>
<td>(δS) - product L-topol. Group</td>
<td>(δS) L-topol. Quotient group</td>
</tr>
<tr>
<td>7</td>
<td>$\varphi_1 = \text{int} \circ \text{cl}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final pre L-space</td>
<td>Initial pre L-topol. Group</td>
<td>Final pre L-topol. Group</td>
<td>Pre-product L-topol. Group</td>
<td>Pre L-topol. Quotient group</td>
</tr>
<tr>
<td>8</td>
<td>$\varphi_1 = \text{cl} \circ \text{int}$ $\varphi_2 = S \circ \text{cl}$</td>
<td>Final $(S \theta)$ L-space</td>
<td>Initial $(S \theta)$ L-topol. Group</td>
<td>Final $(S \theta)$ L-topol. Group</td>
<td>$(S \theta)$ - product L-topol. Group</td>
<td>$(S \theta)$ L-topol. Quotient group</td>
</tr>
<tr>
<td>9</td>
<td>$\varphi_1 = \text{cl} \circ \text{int}$ $\varphi_2 = S \circ \text{int} \circ S \circ \text{cl}$</td>
<td>Final $(S \delta)$ L-space</td>
<td>Initial $(S \delta)$ L-topol. Group</td>
<td>Final $(S \delta)$ L-topol. Group</td>
<td>$(S \delta)$ - product L-topol. Group</td>
<td>$(S \delta)$ L-topol. Quotient group</td>
</tr>
<tr>
<td>10</td>
<td>$\varphi_1 = \text{cl} \circ \text{int} \circ \text{cl}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final β L-space</td>
<td>Initial β L-topol. Group</td>
<td>Final β L-topol. Group</td>
<td>β - product L-topol. Group</td>
<td>β L-topol. Quotient group</td>
</tr>
<tr>
<td>11</td>
<td>$\varphi_1 = \text{int} \circ \text{cl} \circ \text{int}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final λ L-space</td>
<td>Initial λ L-topol. Group</td>
<td>Final λ L-topol. Group</td>
<td>λ - product L-topol. Group</td>
<td>λ L-topol. Quotient group</td>
</tr>
<tr>
<td>12</td>
<td>$\varphi_1 = S \circ \text{cl} \circ \text{int}$ $\varphi_2 = 1_{L^t}$</td>
<td>Final feebly L-space</td>
<td>Initial feebly L-topol. Group</td>
<td>Final feebly L-topol. Group</td>
<td>Feebly product L-topol. Group</td>
<td>Feebly L-topol. Quotient group</td>
</tr>
</tbody>
</table>

Table (1): Some special classes of final characterized L-spaces; initial characterized L-topological groups, final characterized L-topological groups characterized product L-topological groups and characterized L-topological quotient groups.

References