Study of IL-35 levels in Multiple Myeloma patients and its Relation with Immunoglobulins

Zeinab M. M. Al-Rubaei¹, Bushra H. ALI¹, Nawal M. Jawad Al-Shammaa¹
¹ Chemistry Department, College of Education for Pure Sciences - Ibn – Al-Haitham, Baghdad University, Baghdad, Iraq

alizeinah@yahoo.com

ABSTRACT

Multiple myeloma (MM) is a malignant disorder characterized by the proliferation of plasma cells and the second most common hematological standing next to lymphoma. Multiple myeloma patients commonly present with defects in numbers and function of various immune cells including dendritic cells, B cells, T cells and natural killer cells[23]. Interleukin-35 (IL-35) is a novel anti-inflammatory cytokine suppressing the immune response through the expansion of regulatory T cells and suppression of Th17 cell development. The present study aimed to investigate the possible role of IL-35 in pathogenesis of MM and its relation with immunoglobulins such as IgA, IgG and IgM. Fortytwo Iraqis patients with multiple myeloma(G1, G2) and twenty healthy individuals as a control group (G1) were enrolled in this study. Whole blood used for determination of hemoglobin. Serum samples were used for determination of albumin, total protein using standard procedures of the biochemistry laboratory of hospital. Also immunoglobulin’s (IgA, IgG, IgM) and IL-35 were determined in serum. The results revealed a significant increasing in urine total protein, ESR, creatinine, uric acid, BUN, and TP in patients groups(G2, G3) comparing to control group(G1) while a significant decrease in albumin and Hb were found in patients groups comparing to control. Also a significant differences was observed in calcium concentration in G3 compared to G2 while there are no differences was observed between G2 and G1. The results shown highly significant increase in IgA, IgG, IgM and IL-35 in patients groups comparing to control group. Also a significant differences were noticed in G3 comparing to G2. A highly significant positive correlation between IL-35 and IgA was noted in G2 and G3. Some cytokines of the IL-12 superfamily are predominantly produced by antigen presenting cells in response to microbial or host immune stimuli and are involved in the regulation of immune responses against infections and tumor development[8,9].

INTRODUCTION

Multiple myeloma (MM) is a monoclonal post–germinal center tumor that has phenotypic features of plasmablasts / plasma cells and usually localize at multiple sites in the bone marrow and is the second most common hematological standing next to lymphoma[1]. Multiple myelomas clinically characterized by ≥ 10% of plasma cell infiltration in the bone marrow and presence of hyperglycemia, renal disorder, anemia, and bone lytic lesions[2]. Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family that is comprised of an IL-12p35 subunit and an IL-12p40 related protein subunit [3,4]. IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells[5-7]. Some cytokines of the IL-12 superfamily are predominantly produced by antigen presenting cells in response to microbial or host immune stimuli and are involved in the regulation of immune responses against infections and tumor development[8,9].

Other clinical study support the concept that some members of IL-12 may represent a novel, promising therapeutic agent for patients affected by different oncologic diseases including potentially MM, based upon is documented multifunctional activity[10,11]. Recently, several research groups analyzed Treg cells in multiple myeloma. So far, Treg cells data in multiple myeloma are conflicting. Study from Prabhala et al and Gupta et al [12,13] reported decreased frequency of peripheral blood Treg cells in multiple myeloma when compared to control group. Both studies confirmed that FoxP3 expression was reduced in myeloma patients. Most studies in myeloma agree that Treg cells efficiently suppress both autologous and allogeneic responder cells (CD4+CD25-) similarly to healthy subjects[14-16]. Synonymous with differential expression, the IL-12 cytokine family also exhibits distinct functional differences. While IL-12, IL-23, and IL-27 share the common feature of inducing interferon-γ (IFNγ) production and promoting T-helper 1 (Th1) cell differentiation and proliferation, they act differentially on subsets of T cells and with different kinetics. In contrast, IL-35 appears to function solely in an anti-inflammatory fashion by inhibiting T-cell proliferation and perhaps other parameters [17,18].
The aim of the present study is to investigate the possible role of IL-35 in pathogenesis of MM and its relation with immunoglobulins (IgA, IgG and IgM).

MATERIALS AND METHODS

Fasting blood samples were obtained from forty Iraqis patients with multiple myeloma and twenty healthy individuals as a control group (G1) which enrolled in this study. Patients were divided into two stages (G2, G3) according to Durie-Salmon staging system [19] which attended Baghdad Teaching hospital. Whole blood used for determination of hemoglobin. Serum samples were used for determination of albumin, total protein using standard procedures of the biochemistry laboratory of hospital. Immunoglobulins (IgA, IgG, IgM) determined by Ria immunodiffusion (RID) method [20] using kit from LTA s.r.l. (Italy).

Serum IL-35 levels were measured using specific enzyme-linked immunosorbent assay (ELISA) kit (CUSABIO Human IL-35 for in vitro quantitative measurement) according to the manufactures protocol.

The data was expressed as mean ± SD. The comparison between patients group and control group were analyzed by using student t-test. Pearson's correlation coefficient was used to examine between IL-35 and immunoglobulins in patients group. P-value of < 0.001 and < 0.05 were considered highly significant and significant respectively.

RESULTS AND DISCUSSION

Descriptive and diagnostic parameters for the three studied groups (C, G1, G2) are shown in table (1). The results revealed a significant increasing in urine total protein, ESR, creatinine, uric acid, BUN, and TP in patients groups (G2, G3) comparing to control group (G1) while a significant decrease in albumin and Hb were found in patients groups comparing to control. Also a significant difference was observed in calcium concentration in G3 compared to G2 while there are no differences was observed between G2 and G1.

Table (1): Descriptive and diagnostic parameters for the three studied groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>G1 n=20</th>
<th>G2 n=20</th>
<th>G3 n=3</th>
<th>P-value</th>
<th>P*-value</th>
<th>P**-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>58.5 ± 6.4</td>
<td>56.5 ± 8.4</td>
<td>58.4 ± 8.3</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Urine total protein (mg/24 hours)</td>
<td>150</td>
<td>2400, M protein κ</td>
<td>3000, M protein κ</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>Amyloid</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Monoclonal band</td>
<td>------</td>
<td>Mband, IgGk κ in serum</td>
<td>MbandIgG κ in serum and urine</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>ESR (mm in 1st hr)</td>
<td>12 ± 3.4</td>
<td>50 ± 15.9</td>
<td>64 ± 20.33</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>13.6 ± 0.86</td>
<td>9.1 ± 2.3</td>
<td>7.66 ± 2.12</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>2.3 ± 0.54</td>
<td>2.4 ± 0.6</td>
<td>5.3 ± 1.54</td>
<td>NS</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>62 ± 18.1</td>
<td>88.4 ± 25.6</td>
<td>105.2 ± 30.1</td>
<td>S</td>
<td>HS</td>
<td>HS</td>
</tr>
<tr>
<td>Uric acid (µmol/L)</td>
<td>299 ± 68</td>
<td>433 ± 125</td>
<td>533 ± 152</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>BUN (mmol/L)</td>
<td>5 ± 1.45</td>
<td>7.1 ± 2.5</td>
<td>8.9 ± 2.41</td>
<td>S</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>TP (g/dl)</td>
<td>7.5 ± 0.4</td>
<td>8.5 ± 2.4</td>
<td>9.9 ± 3.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>5.25 ± 1.45</td>
<td>4.33 ± 1.26</td>
<td>3.25 ± 1.11</td>
<td>S</td>
<td>HS</td>
<td>NS</td>
</tr>
</tbody>
</table>

S Significant (P < 0.05), HS highly significant (P < 0.001), NS no significant (P ≥ 0.05)
The results in table (2) shown the levels of IgA, IgG, IgM and IL-35. The results revealed highly significant increase in IgA, IgG, IgM and IL-35 in patients groups comparing to control group. Also a significant differences were noticed in G3 comparing to G2.

<table>
<thead>
<tr>
<th>Groups Parameters</th>
<th>G1 n=20</th>
<th>G2 n=20</th>
<th>G3 n=20</th>
<th>P-value</th>
<th>P*-value</th>
<th>P**-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA(mg/dl)</td>
<td>173.85</td>
<td>204.15</td>
<td>352.2</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>IgG(mg/dl)</td>
<td>270.2</td>
<td>305.45</td>
<td>410.45</td>
<td>S</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>IgM(mg/dl)</td>
<td>149.9</td>
<td>270.95</td>
<td>349</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td>IL-35(pg/ml)</td>
<td>23.21</td>
<td>45.87</td>
<td>69.95-69.95</td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
</tr>
</tbody>
</table>

A highly significant positive correlation between IL-35 and IgA was noted in G2(r=0.408, p<0.001) and G3 (r=0.405, p<0.0001) (figures 2A,2B).

Figure 1: Correlation between serum levels of IL-35 and IgA in G2(1A) and G3 (1B) of MM patients
Also a highly significant positive correlation between IL-35 and IgG levels was noticed in G2 ($r= 0.139$, $p< 0.001$) and G3 ($r= 0.102,p<0.001$) (figure 2A, 2B).

Moreover a significant negative correlation founded between IL-35 and IgM in G2 ($r=- 0.456 ,p<0.05$) and G3 ($r=0.358 ,p<0.05$) (figures 3A,3B).

Figure (2) :correlation between serum levels of IL-35 and IgG in G2 (2A)and G3 (2B) ofMM patients.
Pathogenesis of MM is complex and dependent on the interactions between tumor cells and their microenvironment\[8\]. Tumors grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokine's, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumor progression, which can vary according to cancer type\[21\]. Multiple myeloma patients commonly present with defects in numbers and function of various immune cells including dendritic cells, B cells, T cells and natural killer cells\[22\]. Previous work indicated that, like IL-27, and IL-35 may be an immunomodulation at the feta-maternal border\[7\].

Most of the studies strongly suggest that myeloma patients Treg cells are functional in suppressing the conventional T cell proliferation, and this suppressive function encourages the immune impairments and dysfunctions. However, Treg cells suppressive function could be appreciated in the case of graft versus host disease where donor cells require engraftment to ensure the anti-tumor effects \[18\]. All three of the original family members, IL-12, IL-23, and IL-27, were initially described as pro-inflammatory/stimulatory cytokines, promoting T-cell proliferation and cytokine production\[23\]. IL-35 is a novel anti-inflammatory cytokine suppressing the immune response through the expansion of regulatory T cells and suppression of Th17 cell development\[24\]. Another study indicate that IL-27 is important for anti-parasite immunity against *L. major* and...
IL-35 suppresses this immunity, the net effect of losing both IL-27 and IL-35 might be susceptibility to the infection, at least during the early phase of infection[25].

The recent study found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation. In conclusion, this results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis[4].

CONCLUSION
The results revealed an increasing in the level of IL-35 in MM patients. Also, the positive relation of MM with immunoglobulins reflect the possible relation of IL-35 with immunesystem. Therefore, further studies are required to investigate the precise effect and the signaling transduction mechanisms of IL-35 in the MM process.

REFERENCES
[16] Feyer,S., Von Lilienfeld Vool,M., Jarmin,S., Marles,L., Rawstron,A., Ashcroft,AJ., Owen, RG., Sellby,pj., Cook,G.,(2009),CD4(+)CD25(+)FOXP3(+)regulatory T cells are increased whilst CD3(+)CD4(-) CD8(-)alpha beta
TCR(+)Double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. British Journal of Haematology. 144(5):686-695.
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** http://www.iiste.org/journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library , NewJour, Google Scholar