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Abstract 

Background: A diet rich in fibers has been associated with reduced body weight, prevention of metabolic 

syndrome and improved glycemic control in patients with type 2 diabetes mellitus. Gum arabic (GA) is a dietary 

fiber of mainly polysaccharide composition derived from the dried exudates from Acacia senegal.Methodology: In 

this study, we investigated the effects of GA on glucose metabolism and body weight gain in wild-type C57Bl/6 

mice. GA treatment was delivered as a 10% drinking solution. Results: During GA treatment oral glucose 

tolerance with 3mg/g bw was significantly improved compared to control mice (AUC 29700±1018 min·mg/dl vs. 

27207±892 min·mg/dl) whereas intra-peritoneal glucose tolerance test was unaffected by GA treatment. Also the 

insulin level was increased during oral and inter-peritoneal glucose tolerance test. Under prolonged treatment with a 

20% glucose solution after 4 weeks, glucose-treated mice gained significantly more body weight (+6.31±0.75 g) 

compared to glucose and GA-treated mice (+0.74±0.25 g) despite similar food and fluid intake.  Fasting blood 

glucose concentrations were increased significantly following challenge with a 20% glucose solution (172±63 mg/dl) 

which was blunted by simultaneous treatment with GA (120±88 mg/dl).To test, whether GA is similarly effective in 

high fat diet, the body weight was monitored in animals receiving a high fat diet with or without GA. The total body 

weight gain was significantly decreased in  GA treated  (+10.97±0.76 g)  as compared to non treated mice  

(+13.98±0.98 g), despite similar fluid and  food intake. The fasting blood glucose was also  blunted by 

simultaneous treatment with GA (94±6 mg/dl) as compared with other group (140±9 mg/dl) followed by a 

significant decrease in fasting insulin concentrations in GA treatment mice (0.57±0.05 mg/dl) as compared to 

non treated  (0.83±0.08 mg/dl) . 

Conclusion: GA was found to have affected the consequence of body weight gain during glucose and high fat diet 

and prevented glucose-induced obesity. 
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Introduction 

Dietary fibers are the edible constituents of plant foods (or analogous carbohydrates) that escape digestion in the 

upper intestine and undergo complete or partial fermentation in the large intestine (FAO Food Nutr Pap 1998). A diet 

rich in fibers has been associated with reduced body weight (Koh-Banerjee et al., 2004) and prevention of metabolic 

syndrome (McKeown et al., 2004.). In patients with diabetes mellitus type 2, an increased intake of dietary fiber 

improved glycemic control and reduced hyperinsulenemia (Chandalia et al., 2000). Proposed explanations for the 

beneficial effects of dietary fibers include interaction with food intake and body weight through satiation, glycemia 

and insulinemia, blood lipids and blood pressure (Delzenne et al., 2005).  

Gum Arabic (GA) is a water-soluble dietary fiber derived from the dried gummy exudates from the stems and 

branches of Acacia senegal (Younes et al, 1995). Chemically, GA is a polysaccharide based on branched chains of 

(1-3) linked β-D-galactopyranosyl units. Side chains of 2-5 units in length are attached by (1-6) links to the main 

chain. Both the main chain and the side chains contain α-L-arabinofuranosyl, α-L-rhamnopyranosyl, β-D-

lucuronopyranosyl and 4-O-methyl-β-D-glucuronopyranosyl units (Deckwer et al., 2006). GA is readily soluble 

in water without increasing viscosity (Tiss et al., 2001). GA is widely used in both the pharmaceutical and the food 

industry to serve as an emulsifier and stabilizer of various products for human consumption. 

GA is primarily indigestible for both humans and animals and after passing the small intestine, it is fermented in the 

colon under the influence of microorganisms to short chain fatty acids (Phillips, 1998). The US Food and Drug 

Administration recognized it as one of the safest dietary fibers (Anderson, 1986). GA has also pharmacological 

effects related to interference with the gastrointestinal absorption of nutrients. The previous study showed that GA 

affected the intestinal absorption of Na
+
 and water in healthy mice while enhancing calcium and magnesium uptake 

(Nasir et al., 2008). In a rat model of chronic osmotic-diarrhea GA exerted pro-absorptive properties by increased 

sodium and water absorption (Teichberg et al., 1999; Wapnir et al., 1997).  

In humans GA treatment indeed modifies the body weight, decreased body mass index and body fat percentage 

among healthy adult females, and effect, which could be exploited in the treatment of obesity (Babiker R et al.,2012). 

The effect of GA on obesity in humans, may possibly be in part due to an influence on satiety. GA treatment 

decreases the caloric intake and increases the subjective ratings of feeling satiated (Calame W, et 
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al.,2011) .Additional studies were performed on GA in diabetic animals, i.e. In heterozygous akita (akita-/+) mice 

developing spontaneous diabetes due to gradual destruction of the pancreas ß-cells. GA treatment of the akita+/- 

mice tended to slightly blunt the hyperglycemia (Nasir O, 2012). 

Given the beneficial effects of dietary fibers on the prevention of metabolic syndrome and obesity, we investigated 

whether the GA treatment have an effect on glucose, insulin levels as well on course of body weight gain during 

glucose rich or high fat diet in healthy wild-type C57Bl/6 mice. 

 

Material and Methods 

Animals 

Experiments were carried out on male of 5-7 weeks old wild-type C57Bl/6 mice (Charles River, Germany). The 

animals were housed under controlled environmental conditions (22-24°C, 50-70% humidity and a 12-h 

light/dark cycle). Throughout the study, mice had free access to standard pelleted food or high fat diets (C1310, 

Altromin, Lage, Germany) and tap water, glucose or Gum Arabic from (DarSavanna/Nature Gums Co., Sudan, 

www. darsavanna.com.). All animal experiments were conducted according to the guidelines of the American 

Physiological Society and the German law for the care and welfare of animals and were approved by local 

authorities. 

Animal experimentation  

Animals were provided with 10% (w/v) GA dissolved in tap water (100 g/l), preparations were refreshed every 3 

days during the treatment. The intake corresponded to a dose of approximately 20g/kg bw/day. 

To study the effects of GA treatment on glucose tolerance, one week treated and untreated mice were fasted 

overnight with free access to drink and were loaded with 3 mg/g bw glucose in a
 
volume of 10 µl/g bw by either 

intra-peritoneal or oral gavage. For the latter mice were shortly sedated using diethlyether. Blood glucose was 

measured after tail-vein bleeding using a glucometer (Accutrend,
 
Roche, Mannheim, Germany) before and at 15, 

30, 45, 60, 90, 120 and 180 min
 
after the injection of glucose. Blood samples for the determination of plasma 

insulin were taken before glucose loading. Plasma insulin was measured using an ELISA method (Crystal Chem 

INC, USA).  

To investigate the effects of GA treatment on the development of obesity, mice were housed individually and the 

drink of the mice was switched to either 20% (w/v) glucose by 10% GA or 20% glucose only. Control groups 

received tap water or 10% GA. During the treatment of 4 weeks, body weight, food and fluid intake were 

monitored.  

To test, whether GA is similarly effective in high fat diet animals were provided with a control diet (C1310, 4 

kcal% fat, 0.25% Na+, 0.36% Cl-, 0.71% K+, Altromin, Heidenau, Germany) or a high fat diet (C1000, 45 

kcal% fat, 0.25% Na+, 0.36% Cl-, 0.71% K+, modified according D12451 from Research Diet, Altromin, 

Heidenau, Germany) and received 10% (w/v) GA dissolved in tap water (100 g/l) as indicated; preparations were 

refreshed every 3 days during the treatment. During the treatment of 4 weeks, body weight, food and fluid intake 

were monitored. 

Glucose and insulin concentrations were determined in blood drawn after tail-vein bleeding. Plasma glucose was 

determined using a glucometer for investing and after an overnight   (Accutrend, Roche, Mannheim, Germany); 

plasma insulin was measured using an ELISA (Crystal Chem INC, USA). 

Statistics 

Data are provided as means ± SEM, n represents the number of independent experiments. All data were tested 

for significance with parametric or non-parametric repeated measures ANOVA, paired or unpaired Student t-test 

or Mann-Whitney test where applicable using GraphPad InStat version 3.00 for Windows 95, GraphPad 

Software, San Diego California USA, www.graphpad.com. A p-value < 0.05 was considered statistically 

significant. 

 

Results 

To investigate the effect of GA treatment on glucose tolerance, both oral and peritoneal glucose tolerance tests 

were performed with 3 g/kg bw. As illustrated in (Fig. 1A&B) oral application of glucose led to significantly 

higher plasma glucose concentrations in untreated mice compared to GA-treated mice. The calculated area-

under-the-curve for glucose was significantly higher in untreated than in GA-treated mice (34755±2068 

min · mg/dl vs. 29973±778 min · mg/dl, resp.), indicating improved glucose tolerance under GA treatment. 

However, the positive effects of GA were not evident during intra-peritoneal loading (Fig.1B). The calculated 

area-under-the-curve was similar in untreated and in GA-treated mice during IPGTT (46897±3440 min · mg/dl 

vs. 38541±2815 min · mg/dl, resp.).The insulin concentrations were increased during the time course of OGTT 

and IPGTT (Fig. 2A&B). 
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Fig. 1A&B: Effect of GA treatment on blood glucose concentration during OGTT and 

IPGTT. 

 
 

Fig.2: Effect of GA treatment on blood insulin level during OGTT and IPGTT. 

 
To test the in vivo relevance of this observation, blood glucose concentrations were determined as a 

surrogate of glucose uptake. To this end mice were treated with tap water, 10% GA or a 20% (w/v) glucose 

solution with or without 10% GA for 1 week. During GA treatment, the un-fasting blood glucose concentrations 

showed non-significant reduction  (138±5 mg/dl vs 125±4 mg/dl, resp.; Fig.3A). The addition of 20% glucose 

significantly increased fasting blood glucose concentration to (153±8mg/dl), an effect which was significantly 

blunted under combined treatment with glucose and GA (126±9 mg/dl), Fig.3B.  
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Fig.3A &B: Effect of GA treatment on un-fasting and fasting blood glucose level. 

 
Further experiments were performed to investigate the course of the body weight under these treatments over 4 

weeks. Addition of glucose significantly increased fluid intake and decreased food intake to a similar extent in 

both GA+glucose-treated and GA-treated mice compared to both untreated and GA-treated mice (Fig. 4A&B). 

However, glucose-treated mice gained significantly more body weight compared to GA+ glucose-treated mice 

(Fig. 4B). Addition of glucose significantly increased fluid intake and decreased food intake to a similar extent in 

animals treated without or with GA (Fig. 5A&B).  

Fig.4 A &B: Effect of GA treatment on Course and delta of body weight gain 

                                                            A                                                   B 
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Fig.5 A &B: Effect of GA treatment on drink volume and food intake. 

 
To test, whether GA is similarly effective in high fat diet, the body weight was monitored in animals receiving a 

high fat diet with or without GA. However, the mice treated with high diet alone showed significant increase in 

body weight gain mice  (+13.98±0.98 g), compared to non treated mice (+10.97±0.76 g), Fig. 6A&B. 

Fig.6 A &B: Effect of GA treatment on course and delta of body weight gain during high fat diet. 

    

 
As illustrated in Figure.6, high fat diet was paralleled by hyperglycemia and hyperinsulinism, effects 

significantly blunted by GA treatment, Fig. 7A&B. 
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Discussion 

The present study reveals that GA decreases the weight gain as shown in previous studies that GA inhibits intestinal 

glucose absorption by down-regulation of the membrane abundance of SGLT1 which is the major route for intestinal 

glucose absorption (Nasir et.al, 2010.). This was shown in our study by the improved oral glucose tolerance while 

inter-parenteral glucose loading was unaffected in GA-treated mice, indicating that effects of GA on the glucose 

metabolism are related to interaction with the intestine. Indeed, The Na
+
-D-glucose cotransporter SGLT1 plays

 
a 

key role in intestinal glucose absorption as illustrated
 
by defective mutants of SGLT1 in humans, which lead to 

glucose-galactose-malabsorption in the newborn (Wright et al 2003). The expression and activity of SGLT1 

were increased following a carbohydrate-rich diet (Ferraris et al, 1989). Regulation
 
of SGLT1 can be mediated 

by adrenergic innervation (Ishikawa et al., 1997), insulin (Stümpel et al., 1996),
 
glucagon-like peptide 2 

(Cheeseman et al., 1997), cholecystokinin (Hirsch and Cheeseman, 1998), and insulin-like
 
growth factors (Lane 

et al., 2002). It has been shown that
 
SGLT1 can be regulated by changes in transcription (Martin et al., 2000), 

mRNA stability (Loflin and Lever, 2001), amount of transporter within the plasma
 
membrane (Hirsch et al., 

1996), and transporter activity (Vayro et al 1999). Kinases regulating SGLT1 membrane abundance and/or 

activity include the PI3-Kinase ,PI3K, ( Rexhepaj et al., 2007), the phosphoinostide-dependent kinase 

1,PDK1,( Artunc et al., 2006) or the serum-and glucocorticoid-regulated kinases 1 and 3,SGK1/3, ( Artunc et al., 

2006) . The 67-kDa-protein RS1 is another factor influencing SGLT1 activity by transcriptional
 

and 

posttranscriptional regulation (Veyhl et al., 2006). The latter has an inhibitory effect on SGLT1 expression while 

PI3K, PDK1, SGKs stimulate SGLT1 activity and/or expression.  

Data from the gene array showed that the transcript levels for the RS1 and SGK3 were significantly reduced, 

suggesting a possible mechanism for the effects of GA on SGLT1 membrane abundance (Nasir et.al, 2010.). GA 

treatment reduced transcript levels of SGLT2, however, the contribution of this finding to the inhibition of glucose 

uptake is not clear. 

In keeping with the electrophysiological and expression data, intestinal glucose absorption was reduced in vivo 

during GA treatment as evidenced by reducing blood glucose concentrations which were measured as surrogate of 

glucose uptake. Plasma insulin levels paralleled the blood glucose concentrations ruling out the effects of GA on 

insulin secretion. Moreover, GA treatment robustly prevented glucose-induced weight gain over 4 weeks despite 

similar fluid and food intake. The reduction of weight gain was also seen in the absence of glucose. GA treatment 

significantly reduced urinary glucose excretion, Na+ excretion and urinary volume (Nasir O,et al.,2012)]. The 

reduced glucosuria presumably contributed to the blunted diuresis and urinary Na+, K+ and urea excretion. 

Glucosuria causes osmotic diuresis with subsequent renal loss of electrolytes (Lang F,1987). 

Our results indicate that GA treatment does not interfere with peripheral glucose uptake when glucose loading was 

done inter-parenterally. GA treatment in mice include decreased expression of intestinal Na+  coupled  glucose 

carrier SGLT1 with subsequent delay of electrogenic intestinal glucose transport,glucose-induced hyperglycemia, 

hyperinsulinemia and body weight gain GA treatment has been shown to decrease intestinal Na+ coupled glucose 

transport by downregulating the Na+ coupled glucose carrier SGLT1( Nasir O, et al.,2010), which determines the 

rate of intestinal glucose absorption and thus influences glucose-induced insulin release and development of obesity . 

Addition of GA to the drinking water of C57Bl/6 mice significantly decreased SGLT1 protein abundance in jejunal 

and ileal brush border membrane vesicles( Nasir O, et al.,2010). According to gene array data, GA does not decrease 

SGLT1 protein expression by inhibiting SGLT1 transcription but modifies SGLT1 abundance rather by modifying 

posttranscriptional regulation ( Nasir O, et al.,2010). Besides altering transcription or mRNA stability SGLT1 could 

be modified by trafficking into the plasma membrane  or by direct regulation of transporter activity (Martin MG,et 

al.,2000). 

GA treatment did not significantly alter food intake and only slightly decreased fluid intake [44].Addition of 20% 

glucose in drinking water significantly increases body weight and fasting plasma glucose concentrations, effects 

significantly blunted by simultaneous treatment with GA. Earlier studies showed that in contrast to chronic GA 

treatment, direct application of GA to perfused jejunal segments did not influence intestinal glucose uptake 

(Wingertzahn MA, et al.,2001).Presumably due to downregulation of SGLT1 activity GA treatment blunts the 

hyperglycemic effect of excessive glucose intake .  

Dietary fibers were shown to decrease body weight (Koh-Banerjee P,et al.,2004),to prevent metabolic syndrome 

(McKeown NM,et al.,2004) and to improve glycemic control as well as hyperinsulinemia in type II diabetes 

(Chandalia M,et al.,2000). The effect of dietary fibers has been attributed to interaction with food intake and body 

weight through satiety, glycemia and insulinemia, blood lipids and blood pressure (Delzenne NM,et al.,2005). 

So far, the beneficial effects of dietary fibers have been explained by interaction with food intake and body weight 

through satiation, glycemia and insulinemia, blood lipids and blood pressure (Delzenne et al., 2005). GA has been 

shown to enhance intestinal water and Na+ absorption in a rat model of chronic-osmotic diarrhea thus favoring 

rehydration . Apparently, the effects of GA on intestinal Na+ and water absorption are dependent on the condition of 

the intestine ,in addition to other beneficial health effect which have been recently published in a review article by 

Omaima Nasir,2013. 
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In summary, the dietary fiber GA has a favorable effect on glucose metabolism and reduction of body weight gain , 

which could be used in turn as prophylactic or treatment of  obesity and the development of metabolic syndrome. 
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